
University of Innsbruck

Institute of Computer Science

Intelligent and Interactive Systems

Improved On-Board Communication for Low-Cost Mobile Robots

Alexander Hirsch

B.Sc. Thesis
Supervisor: Justus Piater

Simon Haller
20th June 2014

Abstract

This project seeks to improve the communication process between the host computer of an existing,
low-cost robot, and some on-board peripherals. This robot is used by the department of Computer
Science at University of Innsbruck for teaching students autonomous systems. The robot is driven
by an Android phone which communicates with the robot’s internal peripherals. The components in
use for this communication process introduce various problems which are resolved by this project to
ensure better user experience.

Possible prototypes have been evaluated to find the best possible solution for the task. Although the
best solution still has some flaws, another prototype was created which brings some new benefits
along. Among them are easy to use and easy to maintain interfaces. Together with the prototypes
documentation and examples have been crafted to ensure easy access to the material for students.
Modularity of the robot has been improved which enables other people to easily enhance the robots
capabilities.

The component used in the final solution consists of a microcontroller which is programmed to
read in data from an Android phone and controls the robot accordingly. Apart from hardware the
microcontroller’s firmware has been written together with and example Android application.

i

ii

Acknowledgments

First one on the list has to be Simon Haller who provided a huge amount of support even while being
busy.

Also huge thanks to Lukas Schöpf, setting up a PCB printing lab really helped with creating the
prototypes and final solution.

Thank you to Senka Krivić, my fellow students, my family and the friendly members of the IIS Team
which always provided support when needed.

iii

iv

Contents

Abstract i

Acknowledgments iii

Contents v

List of Figures vii

Declaration ix

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Contribution . 2
1.3 Thesis Outline . 2

2 The Robot 3
2.1 Robot Interior . 3
2.2 Robot On Top . 4
2.3 Component Interaction . 4

3 Background Information 7
3.1 IOIO Board . 7
3.2 Pulse Width Modulation . 8
3.3 Servo Motor . 8
3.4 H-Bridge . 9
3.5 Inter-Integrated Circuit (I2C) . 9
3.6 IR Sensor . 10
3.7 Microcontroller . 10
3.8 Microcontroller Software . 11
3.9 In-System Programming (ISP) . 12
3.10 Universal Asynchronous serial Receiver and Transmitter 12
3.11 USB Host . 13
3.12 USB On The Go (OTG) . 13

4 Evaluation Process 15
4.1 Categories . 15
4.2 FT311D . 15
4.3 Arduino Uno . 16
4.4 AVR ATmega32 . 16
4.5 Raspberry Pi Model B . 16

v

4.6 Beagle Bone Black . 17
4.7 Evaluation . 17

5 FT311D Prototype 19
5.1 The Chip . 19
5.2 Prototypes . 21
5.3 Android Version Problem . 21

6 ATmega32 Prototype 23
6.1 ATmega32 microcontroller . 23
6.2 FT232 . 24
6.3 Layout . 24
6.4 Firmware . 26

6.4.1 UART Module . 27
6.4.2 Log Utility . 29
6.4.3 Command Module . 29
6.4.4 I2C Module (TWI) . 30
6.4.5 Timer1 Module . 30
6.4.6 Robot Module . 31
6.4.7 Main . 31

6.5 Available commands . 32
6.6 Connecting the devices . 32
6.7 Final Board . 34

7 RobotWASD App 37
7.1 Requirements . 37
7.2 FTDriver . 37
7.3 App . 38
7.4 Manifest and USB Permission . 39

8 Conclusion 43

Bibliography 45

A Additional Information 47
A.1 Assembly Files . 47
A.2 AVR Flashing . 47
A.3 AVR Fuses . 48
A.4 Setup Development Environment . 48
A.5 Setup Android Phone . 50
A.6 Python Example . 50
A.7 OpenCV Example . 50
A.8 Nexus 4 enable OTG . 51

B Assembly Drawings 53
B.1 FT311D in I2C Configuration . 53
B.2 FT311D in UART Configuration . 58
B.3 ATmega32 with FT232BL . 63
B.4 ATmega32 Final Board . 68
B.5 ATmega32 Final Board with Pin Headers . 73

vi

List of Figures

1 Front view of the robot . 1

2 Robot interior outline . 3
3 Robot on top outline . 4
4 Robot component interaction . 5

5 IOIO Board outline [6, /Getting-To-Know-The-Board] 7
6 3 PWM signals with different duty cycle . 8
7 H-Bridge at work . 9
8 Outline of an I2C Bus with multiple devices [3, p. 169] 10
9 Relation between measured distance and output voltage [12] 11
10 An outline of a single frame send over UART devices [3, p. 144] 12
11 Connection between 2 devices using UART . 13
12 Internal USB OTG cable wiring . 13

13 Block diagram of the FT311D internals . 20
14 FT311D circuit in I2C configuration . 21
15 FT311D prototype printed circuit board . 22

16 FT232BL circuit . 25
17 ATmega32 circuit . 25
18 ATmega32 pin headers . 26
19 ATmega32 prototype . 27
20 I2C bus schematic on the control board . 33
21 Final board - top view including annotations . 34
22 USB to serial 5 V converter - breakout board . 34
23 Final board headers . 35

24 RobotWASD app screenshot . 38

vii

viii

Declaration

By my own signature I declare that I produced this work as the sole author, working independently,
and that I did not use any sources and aids other than those referenced in the text. All passages
borrowed from external sources, verbatim or by content, are explicitly identified as such.

Signed: . Date: .

ix

x

Chapter 1

Introduction

The department of Computer Science at the University of Innsbruck utilizes a set of relatively small,
portable robots. These robots have been assembled by hand and are used for research as well as
for teaching. In summer term 2013 students have taken advantage of the new robots in one course
for the first time. They had to combine the robot with their Android phone to create an autonomous
unit.

While the Android phone’s camera is now the robot’s new vision, the powerful Central Processing
Unit (CPU) which comes with modern Android phones, like the 2.3 GHz Quad-core inside a LG
Nexus 5, is the robot’s new brain. Complex tasks can be broken down into smaller, simpler subtasks
from a high level perspective using Java as programming language.

Figure 1: Front view of the robot

Figure 1 shows a front view of the robot. It is made up of two layers stacked on top of each other.
While the lower (interior) layer holds the battery, motors, sensors as well as a control board, the
upper (on top) layer holds a servo motor (section 3.3) together with the communication board.

1

2 CHAPTER 1. INTRODUCTION

1.1 Context and Motivation

As already mentioned, summer term 2013 was the first time students were able to work with these
self created robots. It soon became clear that there were still issues in the design as well as in
component interaction and programming. Probably the most frustrating issue for the students was
the communication part between their Android application and the robot itself. The IOIO board
(section 3.1) is used as communication board to fill the gap between high level Java programming
and low level robot control. Although the IOIO board is in itself a very powerful board and can
be used as communication board as well as control board its usage can lead to some very com-
plex problems. This is due to its Application Programming Interface (API) desgin, which is highly
Android specific and multi threaded. The high Android focus makes it hard to use in combination
with different (embedded) systems, like a Raspberry Pi1 or Beagle Bone Black2. Additionally the
IOIO Android communication is highly dependant on the IOIO firmware version, IOIO Library ver-
sion and the Android version. Multi threading on the other hand makes debugging certainly a whole
lot more complex and might lead to some race conditions if not properly synchronized with other
components.

1.2 Contribution

This work is dedicated to finding a better solution for communication between an Android phone and
the robot. This means evaluating possible replacements for the IOIO board as well as fully develop
and manufacture the best solution.

There are no special constraints, the solution should be practical in terms of cost, dimension, com-
plexity, portability, etc. A good all-round solution is targeted.

Apart from a printed circuit board (PCB) and its firmware, good documentation including examples
should be created for easy access. Students should have no problems using this example as basis
for their projects.

1.3 Thesis Outline

The entire thesis consists of 7 chapters. The current chapter introduces and motivates this thesis.
The next chapter provides a detailed overview of the robot itself, followed by some background
information needed to fully understand this work. In chapter 4 the evaluation process is described.
The fully developed prototypes are documented in chapter 5 and 6. Chapter 7 covers the Android
test application.

1see http://www.raspberrypi.org/
2see http://beagleboard.org/Products/BeagleBone+Black

http://www.raspberrypi.org/
http://beagleboard.org/Products/BeagleBone+Black

Chapter 2

The Robot

Introduction

This chapter will introduce the robot together with its components. After describing the 2 layer layout
interaction between the components will be explained.

2.1 Robot Interior

The robot’s chassis is made up of 4 acrylic glass plates snapped together with screws. Two plates
on the sides, on the bottom the other on top. The top and bottom plate create enough room between
them so the battery, some sensors, 2 DC motors as well as the control board fit in there.

Control

Board

Battery

DC Motor

IR Sensor

DC Motor

IR Sensor IR Sensor

IR Sensor IR Sensor

LEDLED

LED LED

Figure 2: Robot interior outline

Figure 2 provides an overview of the interior components. The colors in this figure match the colors
in fig. 4 for consistency. The battery provides power to all components on the inside as well as the
servo motor on top (section 2.2).

3

4 CHAPTER 2. THE ROBOT

The control board holds all required electronic parts, distributes power from the battery to where it is
needed, holds two H-Bridge (section 3.4) motor drivers (one for each DC motor) and an ATmega644
AVR microcontroller (section 3.7) to control the robot, hence the designation “control board”.

All 5 sensors are Infra Red (IR) proximity sensors (section 3.6) which are used to grant the robot
more situational awareness. Apart from these sensors bumpers can be added if necessary. The
robot also features 2 red and 2 blue Light Emitting Diodes (LEDs) which can be controlled sepa-
rately.

Also the control board has an on/off button located on the underside which can be accessed through
a hole in the acrylic glass plate.

2.2 Robot On Top

Servo

Motor

Comm

Board

Figure 3: Robot on top outline

Figure 3 shows the top layer. Top and interior layer are connected with wires through holes in the
top plate. The servo motor is connected to a bar in front of the robot (fig. 1) via a fabric thread. By
altering the servo motor’s position the bar can be lowered to ensnare some object (like a ball) and
be raised afterwards to release it.

The communication board is placed on top as well to provide easy access since an Android phone
has to be connected to it via the Universal Serial Bus (USB).

2.3 Component Interaction

Communication between the two boards happens over an Inter-Integrated Circuit(I2C) bus (sec-
tion 3.5). The communication board receives commands from the Android phones, and forwards
them to the control board accordingly. For some reason I do not know, the servo motor has been
connected to the communication board instead of the control board by design, hence the communi-
cation board has to control the servo motor as well.

2.3. COMPONENT INTERACTION 5

Servo

Motor

IR Sensors

Comm

Board

DC Motor L

DC Motor R

LEDsLEDs

Control

Board

(ATmega644)

I2C

P

W

M

A

D

C

H-Bridge

H-Bridge

P

W

M

P

W

M

Figure 4: Robot component interaction

Controlling the servo motor is done via a pulse width modulation (PWM) signal (section 3.2). Where
the pulse width is proportional to the servo motor’s position.

IR sensors output a voltage signal which correlates to the distance between the sensor and an object
in front of the sensor. Do note that this correlation is not linear (section 3.6). The provided voltage
output is read via an analog to digital converter (ADC) and is then available as digital value which
can be passed to the Android application.

Brightness of the LEDs can be controlled separately via PWMs. Here the PWM signal’s mean value
corresponds to the LEDs brightness.

Both DC motors can be controlled individually using H-Bridge drivers. The motors also provide
feedback about how much they have turned, which is read by the microcontroller. This way telemetry
can be used to control the robot as well.

6 CHAPTER 2. THE ROBOT

Chapter 3

Background Information

Introduction

This chapter will state information needed in the upcoming chapters. The reader can skip this part
for now and come back later when in need. This chapter is aimed at computer scientists not that
familiar with electronic concepts and designs.

3.1 IOIO Board

Figure 5: IOIO Board outline [6, /Getting-To-Know-The-Board]

Figure 5 shows an outline of the IOIO Board including annotation on some important connectors.
The board operates at 3.3 V and features pin headers on the side for easy access. A PIC24F1 is
used as control unit.

1Peripheral Interface Controller

7

8 CHAPTER 3. BACKGROUND INFORMATION

Pins 47 and 48 are used for I2C communication, pin 10 is used as PWM output to control the servo
motor.

The IOIO board comes with USB capability including a driver and a multi threaded API for Android.
The USB interface can also be used for a bluetooth adapter which enables wireless communication
to the IOIO board.

3.2 Pulse Width Modulation

time

Duty Cycle 25%

Duty Cycle 50%

Duty Cycle 75%Pulse Width

Period

Figure 6: 3 PWM signals with different duty cycle

A PWM signal is a periodic signal switched between logic high (commonly 5 V) and logic low (com-
monly 0 V). The logic high time duration is called pulse width and the ratio between pulse width
and period is called duty cycle (stated in percent). Figure 6 provides 3 example PWM signals with
different duty cycle. By varying the duty cycle the signal’s mean value changes accordingly. This can
be used to control a LED’s brightness if the frequency is high enough. [1, /en/Tutorial/PWM]

Duty Cycle [%] = Pulse Width × 100
Period

(1)

Also note

Frequency[Hz] = 1
Period

(2)

3.3 Servo Motor

Servo motors are usually driven by a PWM signal, this signal is used to control the servo motor’s
position. The desired position can be reached by altering the duty cycle accordingly, which allows
for precise angular positioning. The motor has 3 pins, two of them are used for power supply, the
PWM signal should be relayed to the third pin.

This application uses one motor by Modelcraft (WG-90MG). They require a PWM frequency of about
50 Hz. This servo motor is used to control the cage in front of the robot which can be used for
catching different objects.

3.4. H-BRIDGE 9

3.4 H-Bridge

- MOTOR +

Vcc

GND

- MOTOR +

Vcc

GND

H-Bridge forward H-Bridge backward

Figure 7: H-Bridge at work

A H-Bridge is a special kind of a motor driver used in combination with a DC motor. These drivers
make it easy to control the motors from digital devices like a microcontroller. In this application
two VNH3SP30-E chips are used, one for each motor. They provide a digital interface to state the
motors direction and a PWM interface to control velocity.

The motor is wired between 4 switches. By closing 2 switches like shown in fig. 7 current flows
through the motor in one direction. If the 2 other switches are closed instead, current flows in the
opposite direction. Velocity is altered by limiting the current flowing through the motor. This limit is
regulated by the PWM signal.

More information on the VNH3SP30-E can be retrieved from [13].

3.5 Inter-Integrated Circuit (I2C)

The Two-wire Serial Interface (TWI) is a bus system developed by Philips in the early 80’s and also
known as I2C.

[It] is ideally suited for typical microcontroller applications. The TWI protocol allows the
systems designer to interconnect up to 128 different devices using only two bi-directional
bus lines, one for clock (SCL) and one for data (SDA). The only external hard- ware
needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving
bus contention are inherent in the TWI protocol. [3, p. 169]

10 CHAPTER 3. BACKGROUND INFORMATION

Figure 8: Outline of an I2C Bus with multiple devices [3, p. 169]

Figure 8 sketches such a bus setup with multiple devices. For this application only 2 devices are
connected via this bus, one operates as master the other as slave.

Transmitting information via the bus happens by either pulling the SDA wire to ground to indicate a
logic 0 or switching the output pin on the SDA wire to high-impedance - the pull-up resistor will drag
the wire up to VCC potential indicating a logic 1.

Some of the advantages of the I2C bus system are that communication is possible using only two
wires, components maintain a simple master/slave relationship and there are no strict transfer rate
limitations like in RS2322.

3.6 IR Sensor

The IR sensors are used to detect obstacles. This sensor measures the distance using a positive
sensitive detector (PSD) and an infrared emitting diode (RED). According to the datasheet [12] its
measuring distance ranges from 100 mm to 800 mm.

Using this infrared sensor it is easy to measure distances fast and accurate. It is supplied with
5 V and provides analog output voltage related to the measured distance. Figure 9 shows this
characteristic. Note that the relation between distance and sensor output is not linear.

The output of the sensors are read by ADCs on the control board.

3.7 Microcontroller

A microcontroller is an integrated circuit (IC) which can be split into 3 different parts. Memory, pe-
ripherals and the microprocessor(s). Among variables and constants memory can hold a sequence
of instructions (a program) which can be executed by a microprocessor. Each processor consists of
an Arithmetic Logic Unit (ALU) and some logic for stepping through the program and decoding each
instruction.

2see http://en.wikipedia.org/wiki/Rs232

http://en.wikipedia.org/wiki/Rs232

3.8. MICROCONTROLLER SOFTWARE 11

Figure 9: Relation between measured distance and output voltage [12]

Peripherals are made up by a set of mostly digital components like timers, counters, analog to digital
converters, PWM generators, low level communication interfaces, general purpose input/output,
comparators, etc. These can be configured by the microprocessor.

Since most of the components inside the chip are digital circuits a clock signal has to be generated.
This clock signal is distributed among the chip. Because peripherals are supplied by this clock
signal, they can operate in parallel to the micro processor. For instance, a timer will still run after
it has been started while the processor is doing some calculations. Some microcontrollers have
multiple processors which can be used independently, others only feature one single processor. In
case of the control board a ATmega644 AVR microcontroller is used. This is a high-performance,
low-power 8-bit Microcontroller by Atmel featuring an advanced RISC Architecture. More information
can be obtained from [4].

3.8 Microcontroller Software

In order to use a microcontroller one has to program it. This is usually done by utilizing the C
programming language. For nearly all microcontrollers a compiler bundle including libraries is avail-
able.

A typical microcontroller program consists of two phases, the setup (also known as initial) phase
and the running phase. During the setup peripherals are configured, in-memory datastructures are
setup, etc. The running phase then serves the purpose of the microcontroller.

To keep microcontroller programs organized the code is split into multiple modules. Each module
consists of a header file stating exports and a C file containing the implementation. Usually each
module has a dedicated purpose and is related to either a software or hardware component.

Table 1 lists the modules of the control board firmware.

12 CHAPTER 3. BACKGROUND INFORMATION

Module Description
adc setup analog digital converter and get analog values
comTwi setup I2C hardware and manage communication
flexport contains various macros for basic bit operations
iMotorCtl main entry point
led setup and change PWM signal for LEDs (uses Timer2)
mBridge low-level motor control using H-Bridges (uses Timer1)
mCtl high-level motor control (uses mBridge module)
pwrManagement manages switching to sleep state and wakeup
sensor setup sensors and get sensor data (uses adc module)
timer internal use for motor control (uses timer0)

Table 1: Control board modules

3.9 In-System Programming (ISP)

Programmable logic devices, microcontrollers and other embedded systems can be programmed
via ISP.

In-System Programming allows programming and reprogramming of any AVR micro-
controller positioned inside the end system. Using a simple Three-wire SPI interface,
the In-System Programmer communicates serially with the AVR microcontroller, repro-
gramming all non-volatile memories on the chip. [2]

In order to use this feature a ISP programmer is required, these programmers are relatively cheap
but do not provide debug features like JTAG. One end of the programmer is connected via USB to
a computer, the other via a header to the device holding the AVR chip. See [2] for more informa-
tion.

3.10 Universal Asynchronous serial Receiver and Transmitter

Communication over UART is similar to RS232 but using either 5 V or 3.3 V as logic 1 (and 0 V for
logic 0). Compared to USB this interface does not require any special handshake mechanism. Both
devices use the same parameters in order to talk to each other.

Figure 10: An outline of a single frame send over UART devices [3, p. 144]

Apart from Baud rate (speed) the protocol defines a format how data is transmitted. This format can
be viewed in Figure 10, it consists of following items.

St Start bit

0-8 Data bits

3.11. USB HOST 13

P Parity bit

Sp Stop bit

The number of data bits as well as the number of stop bits are variable to some degree, but both
device have to use the same settings. Also parity can be set to either odd or even.

Device 1 Device 2

 RxD

 TxD

 GND

RxD

TxD

GND

Figure 11: Connection between 2 devices using UART

For a working communication only RxD and TxD wires are required. Flow control is available through
additional wires although it is not used in this application. A common ground reference has to be
used.

3.11 USB Host

A USB connection between two devices is similar to a master slave relationship. In this case the
two devices are distinguished as host and accessory. By definition the USB host has to power the
accessory and initiate the handshake. Most of the bus management has to be done by the host, for
more details see the USB specification3.

3.12 USB On The Go (OTG)

Figure 12: Internal USB OTG cable wiring

USB On the Go (OTG) is a specification which allows certain USB devices which usually operate as
USB accessory to become a USB host. This can be very useful for a smart phone because this way
it can use its USB port to access a thumb drive or utilize a USB to serial converter.

3see http://www.usb.org/developers/docs/usb20_docs/

http://www.usb.org/developers/docs/usb20_docs/

14 CHAPTER 3. BACKGROUND INFORMATION

A special USB cable must be used for USB OTG and for this setup to work. This cable pulls thesense pin present on mini USB and micro USB ports down to ground as can be seen in fig. 12.
This notifies the internal USB chip that it should switch into USB host mode.

Chapter 4

Evaluation Process

Introduction

This chapter will present some possible solutions (candidates) and rank them against each other. A
prototype with the most promising solution will then be created. For the evaluation process certain
categories will be explained and used, each candidate will receive a score determined by me. The
candidate with the highest score will then be considered the best solution.

4.1 Categories

Following categories will be used for the evaluation process.

Cost needed components and manufacturing should be cheap since multiple robots have to be
equipped with the new hardware.

Simplicity easy to build as well as easy to maintain are huge benefits not only for documentation
purposes but also for continued work.

Availability all required components must be available for purchase and should be delivered in an
acceptable time frame.

Modularity the robot’s components are already designed in a modular fashion, therefore a solution
which does not break current modularity is preferred.

Future Oriented even though a candidate might work for now, things will probably change in future.
New Android versions will ship, new demands will be made against the robot. A good solution
has to be robust in order to support upcoming changes.

4.2 FT311D

According to the datasheet [8] this chip provides six interfaces the user can chose from, among them
UART and I2C. Since the control board communicates with the IOIO board via I2C this chip could
easily replace it.

15

16 CHAPTER 4. EVALUATION PROCESS

The FT311D is a Full Speed USB host specifically targeted at providing access To pe-
ripheral hardware from an Android platform with a USB device port. [8]

Of course to work for this, a new board has to be created which holds the chip including all required
components. But there is a PWM output needed in order to control the servo motor, this output has
to be provided by the new communication board or made available on the control board.

4.3 Arduino Uno

This famous board is commonly used for simple electronic tasks and has an enormous amount of
hardware and software extensions. Apart from I2C and USB communication it can also control the
servo motor and provides huge potential for future work. It uses an ATmega328 microcontroller. [1,
/en/Main/ArduinoBoardUno]

The downside here is that the boards footprint is much bigger than the IOIO board and hence it is
a complete board extending it beyond capabilities of its extension headers will be hard since a new
board has to be designed from scratch.

Arduino provides more products similar to the Arduino Uno, some with smaller packages and differ-
ent extension capabilities. Despite a complete board is easy to use and requires less work, a single
chip is preferred since a new PCB can be designed to suite the given requirements.

4.4 AVR ATmega32

Similar to the chip on the Arduino Uno this microcontroller can handle the task nicely. There are also
AVRs available which contain USB communication peripherals, but since the programming has to
be done by the developer I prefer the use of a USB to serial (UART) converter.

The Atmel R©AVR R©ATmega32 is a low-power CMOS 8-bit microcontroller based on the
AVR enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the ATmega32 achieves throughputs approaching 1 MIPS per MHz allowing the
system designer to optimize power consumption versus processing speed. [3, p. 3]

4.5 Raspberry Pi Model B

The Raspberry Pi is a credit card sized board containing an ARM processor and including various
extension capabilities. This candidate is not just intended to replace the IOIO board but also the
necessity of having an Android phone. Although the processor is not that powerful compared to a
modern Android phone, the board is able to do basic image processing using a web cam or the orig-
inal Raspberry Pi camera. Only the CPU can be used because the graphics processing unit (GPU)
cannot be programmed directly. But the original camera can take advantage of the GPU, hence a
HD image can be read from the camera without interfering with the CPU’s computations.

Model B is the higher-spec variant of the Raspberry Pi, with 512 MB of RAM, two USB
ports and a 100mb Ethernet port. [11, /product/model-b/]

4.6. BEAGLE BONE BLACK 17

4.6 Beagle Bone Black

The Beagle Bone Black is quite similar to the Raspberry Pi, it costs slightly more but has a more pow-
erful CPU. Apart from the CPU it holds 2 additional less powerful CPUs which can be programmed
individually. Like the raspberry pi this would be an alternative to the Android phones, although it is
not as powerful as modern day smart phones are.

BeagleBone Black is a $45 MSRP community-supported development platform for de-
velopers and hobbyists. Boot Linux in under 10 seconds and get started on development
in less than 5 minutes with just a single USB cable. [5, /Products/BeagleBone+Black]

4.7 Evaluation

Candidate Cost Simplicity Availability Modularity Future Oriented Total
FT311D 5 5 5 4 3 22
Arduino Uno 3 3 4 4 3 17
AVR ATmega 32 4 3 5 5 4 21
Raspberry Pi B 2 2 4 3 4 15
Beagle Bone Black 1 1 2 3 4 11

Table 2: Evaluation score, bigger is better

Table 2 shows the final evaluation of the candidates. A candidate can score points between 1 and 5
in each category, the more points the better. While the Raspberry Pi and Beagle Bone Black would
be good solutions to replace the whole Android related setup, using them goes beyond the scope
of this work since only the communication board should be replaced. Using an Arduino Uno would
be cheap and simple but building on top of it will introduce new problems. In the end a self created
board will turn out to be more beneficial. Using an ATmega32 opens up a whole lot of possibilities
but for now keeping it cheap and simple with a focus on extensibility and modularity should get the
job done.

18 CHAPTER 4. EVALUATION PROCESS

Chapter 5

FT311D Prototype

Introduction

The FT311D chip will be introduced in this chapter. General operations will be explained including
its setup. Next the prototypes will be described concluding with an explanation why this chip is not
used in the final solution.

5.1 The Chip

According to the evaluation process the FT311D chip provides the best solution for the stated prob-
lem, this chapter will document the creation of a prototype utilizing this chip.

The FT311D is a USB Host chip made by FTDI1 and is dedicated to Android devices. The chip itself
contains multiple interfaces the user can select from. [8]

Following interfaces are available.

• 7 GPIO lines

• UART

• 4 PWM channels

• I2C master

• SPI2 master

• SPI Slave

Most notably this chip does all USB protocol handling required for you. Example applications (An-
droid apps) for each interface are provided by FTDI. The chip itself runs at 12 MHz and requires an
external crystal. Inputs are 5 V tolerant despite the chip’s supply voltage is 3.3 V.

A block diagram of the chip can be viewed in fig. 13. The Pins CNFG2 - CNFG0 are used to select
the desired interface. Table 3 shows the pin configuration for each interface configuration (mode).

1Future Technology Devices International Ltd.
2Serial Peripheral Interface

19

20 CHAPTER 5. FT311D PROTOTYPE

Figure 13: Block diagram of the FT311D internals

GND means the corresponding pin should be connected to ground indicating a logic 0, open will
result in a logic 1 since the chip has internal pull-ups.

2 prototypes have been created, one using the UART configuration another using the I2C master
configuration. Connecting the chip directly to the control board using the I2C bus should work since
the control board is configured as I2C slave.

CNFG2 CNFG1 CNFG0 Mode
GND GND GND GPIO
GND GND open UARO
GND open GND PWO
GND open open I2C masteO
open GND GND SPI slavO
open GND open SPI master
open open GND factory testing (do not use)
open open open defaults to GPIO

Table 3: CNFG2 - CNFG0 configuration [8]

5.2. PROTOTYPES 21

5.2 Prototypes

The following layout is based on the example configurations provided by the data sheet [8]. The
circuit itself has to be powered by the robots battery, it can not be powered by the phone since the
FT311D will be USB host. By definition the USB host has to provide power for the accessory. For
easy connection a pin header is provided which connects wires from the control board to the pro-
totype. 5 V have to be passed over this header, otherwise we cannot provide 5 V for the accessory.
Although the chip itself is powered by only 3.3 V a voltage regulator is needed. Capacitors have
been added to compensate unforeseen voltage drops as well as a reset circuit for the chip because
it is considered good practice.

Figure 14: FT311D circuit in I2C configuration

Figure 14 displays the main circuit. It has been derived from the data sheet.

Also another layout has been created utilizing the UART configuration. The circuit looks exactly the
same except CNFG2-CNFG2 are wired differently. Also net labels have been altered from SDA and
SCL to RxD and TxD to use the convention.

From the top, both boards look exactly the same, fig. 15 shows one of the boards, a 1 Euro coin has
been placed beside the board to get a better understanding of its size.

5.3 Android Version Problem

First attempts establishing a working connection between the chip and an Android phone failed. A
Nexus 4 smart phone is used running Android version 4.3 at this very moment. The phone works
with the IOIO board. After checking the circuit again and verifying the assembling of the board, other
devices have been tested.

22 CHAPTER 5. FT311D PROTOTYPE

Figure 15: FT311D prototype printed circuit board

I chose to test a different device instead of debugging the current setup because of the complexity a
USB setup introduces. Other Android devices turned out to work just fine with the prototype, though
after some digging around and more testing it became clear. The Android version is the problem,
devices running an older Android version (3.1 - 4.0) work without a problem. But when using a newer
version (4.1 or higher) the phone does not recognize the chip.

Apparently similar issues have happened in the past already, FTDI released a new revision3 to fix
some errors between Android version 3.X and 4.01. Although the chip on the prototype is of revision
C and is therefore the latest available, it is still not recognized.

After encountering this issue, other downsides of this setup became clearer. Even though this
solution is intended to work out of the box, it is highly dependent on the support of FTDI and there is
no guarantee to work with future versions. New versions of the Android OS will be released in future
and might not work with the already shipped and built-in chips. And since there is no way to update
the firmware, old chips must be replaced with new ones.

And even though the robots are used together with Android right now, a communication board which
is not Android dependent might proof useful for the future.

Because of these downsides I chose to create a second prototype using an ATmega32 microcon-
troller as alternative.

3see http://www.ftdichip.com/Support/Documents/ProductChangeNotifications/PCN_FT_014.pdf

http://www.ftdichip.com/Support/Documents/ProductChangeNotifications/PCN_FT_014.pdf
http://www.ftdichip.com/Support/Documents/ProductChangeNotifications/PCN_FT_014.pdf

Chapter 6

ATmega32 Prototype

Introduction

The prototype described in this chapter takes a different approach compared to the FT311D chip
prototype. Again the overall structure of the board will be explained followed by hardware and
software.

6.1 ATmega32 microcontroller

In contrast to the FT311D prototype, which is running as USB host, this prototype runs as USB
accessory. Hence the Android phone must be capable of switching its internal USB chip into host
mode (section 3.11 for more information). This change opens up a whole new set of possibilities, if
this prototype is designed well, the robot can be decoupled from Android and use a more platform in-
dependent communication layer. With such a communication layer one can easily swap the Android
phone for an embedded system or simply connect the robot with a laptop for more sophisticated
tasks.

But in order to achieve this, the communication board itself has to be made up of more than just
a simple converter. Using a more powerful chip on the board also introduces some benefits. On
the one hand, the communication board can take care of controlling the servo motor, provides a
simple protocol suited for the robot and do various optimizations like caching sensor data. Being
able to control the servo motor provides the benefit of not having to change the control board, the
communication between the two boards can remain on using the I2C bus.

The Atmel R©AVR R©ATmega32 is a low-power CMOS 8-bit microcontroller based on the
AVR enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the ATmega32 achieves throughputs approaching 1 MIPS per MHz allowing the
system designer to optimize power consumption versus processing speed. [3, p. 3]

This microcontroller has various peripheral features which can be used for all sorts of things. Fol-
lowing list provides on overview of the most important ones for this application.

• Two 8-bit Timer/Counters

• One 16-bit Timer/Counter

23

24 CHAPTER 6. ATMEGA32 PROTOTYPE

• 4 PWM channels

• 8 10-bit ADC CHannels

• I2C interface (master and slave)

• UART

• SPI (master and slave)

• watchdog timer

There are other, similar chips available which provide different and sometimes even more features
but I picked this one since I have used it in many previous application. It should suffice for this
prototype and can be changed later on if necessary.

Like all microcontrollers this chip has to be programmed before it does something useful, this is
done by using the C programming language together with controller specific libraries provided by
Atmel. All required tools (compiler, linker, flash utility, etc.) are available for GNU/Linux. In general,
written C code gets compiled and linked into a single binary file which then gets flashed on the chip
using a flash utility program together with a (hardware) programmer. The chip is programmed via
ISP (section 3.9).

Even though there are microcontrollers available by Atmel which contain fully programmable USB
peripherals, I chose not to use one of them for the sake of simplicity. Implementing the required
components for a fully working USB communication will require a lot of time and may introduce
bugs. Also the produced code might not be easy to maintain. The UART interface provides a simple
alternative because there is no handshake or special control sequence involved. And because the
amount of data transmitted between the communication board and the Android phone is quite small,
there is no need for high speed USB.

6.2 FT232

Despite the fact that nearly all ARM chips integrated into an Android phone feature at least one
UART peripheral, the UART interface is usually not available for external use. The practical way
of communication with an Android phone is via USB, but since I have decided to not use USB on
the communication board side, a segment between is required. A simple USB to serial converter
will do the job. These serial converter can be acquired from different vendors and with different
specifications.

The chip used in this application is designated FT232BL and designed by FTDI.

There is no special configuration needed in order to use this chip, all commonly used platforms can
interact with the chip out-of-the-box. [7].

6.3 Layout

Starting with the FT232BL USB to serial converter in fig. 16 [7]. Next the ATmega32 chip is featured
in fig. 17. A 100 nF capacitor is provided to prevent unforeseen voltage drops and a reset circuit has
been added. The 16 MHz crystal is decoupled by two 22 pF capacitors.

6.3. LAYOUT 25

Figure 16: FT232BL circuit

Figure 17: ATmega32 circuit

Figure 18 shows all pin headers placed on the prototype. They are used for communication with
an Android phone or a similar device, to communicate with the control board, provide power and a
common ground reference.

When connecting an Android phone to the prototype a USB OTG cable must be used, therefore the

26 CHAPTER 6. ATMEGA32 PROTOTYPE

Figure 18: ATmega32 pin headers

pin header OTG can be used as interface. As an alternative interface the USB jack can be used,
both of them are connected to the FT232BL chip. Apart from USB a Bluetooth module (HC-07) can
be used as communication channel. Therefore the Bluetooth module has to be connected to the
controller via UART using the BT pin header. But in order to use the Bluetooth module jumpers on
pin header FTDI must be taken off to disengage the FTDI chip from the UART interface. I2C can
be used to connect to the control board. ISP features a standard ISP header pinout to connect a
programmer to the board.

As the Android phone is USB host in this setup, it provides the required power for the prototype, this
way there is no need to connect a 5 V wire from the control board to this board although ground has
to be connected to ensure a common reference. If a Bluetooth module is used instead the control
board has to provide the required supply voltage for the board. This feature can also be used for
connecting the Nexus 4 via OTG (appendix A.8).

Note pin header USB Pwr can connect the two 5 V circuits (5 V from USB, 5 V from the robot) which
would otherwise be separated. This jumper should be set if the board is powered by USB from a
USB host. If the robot’s control board provides power this jumper should be cleared.

The assembled board including a mounted micro USB cable can be viewed in fig. 19. An Android
phone can be connected via this USB OTG cable.

6.4 Firmware

The program running on the ATmega32 is split into multiple modules which interact with each other to
fulfill the required tasks. Since the ATmega32 microcontroller does only feature a single processing
core, there is no parallel execution of tasks, but the peripheral components inside the chip run inde-
pendently from the processor. This means a counter for example keeps counting even though the

6.4. FIRMWARE 27

Figure 19: ATmega32 prototype

processor is doing some calculations at the same time. Therefore the counter has to be configured
and started beforehand.

The hardware inside the chip is capable of triggering interrupts. These interrupts are handled by their
corresponding interrupt service routine. This is somehow similar to a callback or occurring event.
Therefore other tasks executed by the processor are suspended and continued after the interrupt
has been handled.

Following sections will describe the modules used in this program.

6.4.1 UART Module

1 #define uart_printf(fmt, args...)\
2 fprintf_P(&uart_stream, PSTR(fmt LINE_ENDING), ##args)
3
4 extern FILE uart_stream;
5
6 void uart_init(void);
7
8 void uart_put_char(char c);
9

10 int uart_put_char_stream(char c, FILE* stream);

Listing 1: UART module exports

Listing 1 shows exported functions and macros. uart_init() configures the UART periph-
eral with hardcoded settings. uart_put_char() will be used to send a single character over
the UART interface. This function can be combined with uart_put_char_stream and theFDEV_SETUP_STREAM macro to create a stream for writing. Now using this file stream a typi-
cal printf() can be derived. uart_printf() works like printf(), but writing the resulting
string out via the UART interface.

Using the default settings of the chip (which can be observed in [3, p. 162]) together with the instruc-
tions in listing 2 the UART peripheral gets initialized to following protocol parameters.

28 CHAPTER 6. ATMEGA32 PROTOTYPE

1 void uart_init(void) {
2 // 9600 baud
3 UBRRH = 0x00;
4 UBRRL = 0x67;
5
6 UCSRB = (1<<RXEN)|(1<<RXCIE)|(1<<TXEN);
7
8 // setup stream
9 stdout = &uart_stream;

10 stdin = &uart_stream;
11 stderr = &uart_stream;
12 }

Listing 2: UART init function

• Baud = 9600 bit/s

• 8 data bits

• 1 stop bit

• no parity

• no flow control

Apart from these parameters the value in register UCSRB state that the receiving part as well as
the transmitting part should be enabled and that an interrupt should be triggered when a value has
been received. This interrupt will be handled in the corresponding interrupt service routine on vectorUSART_RXC_vect.

1 ISR(USART_RXC_vect) {
2 char c = UDR;
3
4 command_t *cmd = command_default();
5
6 switch (c) {
7 case ’\r’:
8 break;
9

10 case ’\n’:
11 command_set_execution_flag(cmd, true);
12 log("command execution marked");
13 break;
14
15 default:
16 if (!command_add(cmd, c)) {
17 log("command to long");
18 }
19 }
20 }

Listing 3: UART interrupt service routine

The interrupt service routine, which can be viewed in listing 3, uses functions provided by the com-mand module which will be described later on. Since the routine is invoked when a value is received
by the hardware the value can be read from the register UDR. If this value corresponds to the ASCII
value for carriage return (‘\r’) it will be ignored. If a line feed (‘\n’) is received, it will mark the last
received command for execution. Otherwise the character will simply be appended to the current
command buffer.

Carriage return and line feed are line ending characters commonly used to signal the execution of
a typed in command. Sometimes only line feed is used, sometimes carriage return as well as line
feed. Because of this we ignore the carriage return character to prevent double execution of the
command.

6.4. FIRMWARE 29

6.4.2 Log Utility

1 #ifdef LOG
2 #define log(fmt, args...)\
3 fprintf_P(&uart_stream, PSTR(fmt LINE_ENDING), ##args)
4 #else
5 #define log(fmt, args...)
6 #endif

Listing 4: Log macro

As listing 4 shows, the log.h file contains a macro which can be turned on or off and builds on
top of the UART functions. This makes logging inside the program easy, also all log output can be
turned off with a single line in config.h.

6.4.3 Command Module

1 typedef struct command {
2 uint8_t buffer[COMMAND_BUFFER_LENGTH];
3 uint8_t index;
4 bool execute_flag;
5 } command_t;

Listing 5: UART interrupt service routine

The heart of the command module is a simple structure which can be viewed in listing 5. One
static instance of this structure is available by default and can retrieved via the function com-mand_default(). The members of this structure should not be accessed directly, instead use
the exported functions (listing 6).

1 command_t *command_default(void);
2
3 bool command_is_full(command_t *cmd);
4
5 bool command_get_execution_flag(command_t *cmd);
6
7 void command_set_execution_flag(command_t *cmd, bool flag);
8
9 bool command_add(command_t *cmd, uint8_t b);

10
11 void command_reset(command_t *cmd);
12
13 bool command_exec(command_t *cmd);

Listing 6: Command module exports

command_add() will add a given character to the buffer if it is not full. command_reset() will
clear buffer and execution flag. command_exec() executes the buffered command and clears the
execution flag afterwards. Note that the buffer is not cleared after execution, this way a buffered
command can be executed multiple times.

The execution flag is used as indicator to show whether a command in the buffer should be executed
or not. Note that buffered commands can be executed even if this flag is not set.

30 CHAPTER 6. ATMEGA32 PROTOTYPE

6.4.4 I2C Module (TWI)

1 void twi_init(void);
2
3 void twi_start(void);
4
5 void twi_stop(void);
6
7 bool twi_send_slave_address(uint8_t addr);
8
9 bool twi_send_byte(uint8_t data);

10
11 uint8_t twi_receive_byte_ack(void);
12
13 uint8_t twi_receive_byte_nack(void);

Listing 7: I2C module exports

The functions defined in this module help interacting with the I2C (TWI) peripheral. twi_init()
will configure the I2C hardware to operate at 100 kHz. The required components are activated on
demand since the prototype will operate as master. twi_start() and twi_stop() will issue
start and stop conditions according to the protocol respectively. To communicate with a device, the
master has to send the corresponding slave address with the R/W bit either set or cleared over
the bus. This is handled by the twi_send_slave_address() function. After issuing the slave
address the master can either send bytes to the slave with twi_send_byte() or read bytes from
it using one of the following two functions. twi_receive_byte_nack() should be used when
receiving only a single byte or the last in a sequence. Otherwise twi_receive_byte_ack()
should be used.

6.4.5 Timer1 Module

In this application the Timer1 hardware part of the microcontroller will be used for the generation of
a PWM signal. This signal is used to control the servo motor. [3, p. 109] holds a table that shows
which bit in the TCCR1 register has to be set to select the desired mode. Mode 15 (a Fast PWM
mode) has been selected.

The selected mode will start the Timer1 at value 0, it will then be incremented until its value matches
the one set in register OCR1A. It is then reset to 0, but keeps running. Now to generate a PWM
signal a value between 0 and OCR1A has been set to the OCR1B register. Upon reaching the value
stated in OCR1B the corresponding output pin flips and generates the demanded PWM signal.

To operate the Timer1 in this mode, a clock source has to be set. In this application we use the
system clock with a pre scale divider of 256. [3, p. 110]

Now we can use OCR1B to alter pulse width and OCR1A to change the frequency. The servo motor
requires a PWM frequency of about 50 Hz, the required value for OCR1A can be calculated with the
formula from the datasheet. [3, p. 101]

fP W M = fCLK

N · (1 +OCR1A) (3)

Where N is the pre scale divider, in this case 256. This can be written as

OCR1A = fCLK

fP W M ·N
− 1 (4)

6.4. FIRMWARE 31

The clock frequency for the ATmega32 is 16 MHz and the desired PWM frequency is 50 Hz.

OCR1A = 16MHz
50Hz · 256 − 1 = 1249 (5)

Useful values for OCR1B will be discovered by experimenting, hence values in this register will be
related to the servo motors position. timer1_set_ocr() will be used to change this value.

6.4.6 Robot Module

The robot module contains high level functions to control the robot. These functions use the already
described lower level functions as foundation.

1 void robot_set_velocity(int8_t left, int8_t right);
2
3 void robot_set_led(uint8_t red, uint8_t blue);
4
5 void robot_drive_request(int8_t distance);
6
7 void robot_turn_request(int8_t angle);
8
9 void robot_get_odometry();

10
11 void robot_set_odometry(int8_t xlow, int8_t xheigh, int8_t ylow, int8_t
12 yheigh, int8_t alphalow, int8_t alphaheigh);
13
14 void robot_get_sensor(void);
15
16 void robot_set_bar_level(uint8_t value);
17
18 void robot_custom(uint8_t *senddata, uint8_t sendsize, uint8_t readsize);

Listing 8: Robot module exports

robot_set_velocity() takes two signed 8 bit integer values as argument, the first one is
used for the left motor, the second one for the right motor. The absolute value of this integer
corresponds to the velocity the motor will run, the sign on the other hand states the direction.robot_get_sensor() requests sensor data from the control board. robot_set_bar_level()
will alter the servo motors position hence changing the bar’s elevation.

robot_drive_request(), robot_turn_request(), robot_get_odometry() androbot_set_odometry() are related to an odometry software module inside the control board.

The robot_custom() function can be used to issue a custom command over the I2C interface.sendsize bytes of the array senddatawill be sent to the robot. If readsize is greater than 0, the
communication board will read readsize bytes and print them like robot_get_sensor().

6.4.7 Main

The complete main function can be viewed in listing 9. After initializing the other modules, the
internal watchdog timer is armed. This timer has to be reseted periodically. Otherwise it will trigger
a system reset. This technique is used to counter a hangup which might occur for example when a
blocking function does not receive the requested amount of data, hence blocks forever. sei() andcli() enable and disable interrupts respectively. The infinite loop in main will periodically reset
the watchdog timer and check if a command has to be executed. If execution of a command is
demanded interrupts will be disabled temporarily.

32 CHAPTER 6. ATMEGA32 PROTOTYPE

1 int main(void) {
2 uart_init();
3 twi_init();
4 timer1_init();
5
6 command_t *cmd = command_default();
7
8 if(gBit(MCUCSR, 3)) {
9 log("watchdog reset");

10 }
11
12 wdt_enable(WDTO_2S);
13
14 log("init done");
15
16 sei();
17
18 while (true) {
19 wdt_reset();
20
21 // execute command
22 if (command_get_execution_flag(cmd)) {
23 cli();
24 if (!command_exec(cmd)) {
25 log("command not found");
26 }
27 command_reset(cmd);
28 sei();
29 }
30 }
31
32 return 0;
33 }

Listing 9: Main function

6.5 Available commands

Which commands are available is defined by the command_exec() function. Each command has
to be transmitted via the UART interface following a certain, very simple format. The first byte in a
transmission is used to determine which command should be executed. Following bytes are handled
as parameters according to the selected command. The transmission is terminated by an optional
carriage return and a required line feed. Available commands are listed in table 4. Each parameter
except payload occupies one byte.

This protocol can be extended easily, simply add more commands, but remember that the com-
mand buffer has a fixed size. It is save against buffer overflow when using the related functions
but limits the amount of parameters a command can take. If you need a bigger buffer edit COM-MAND_BUFFER_LENGTH in config.h accordingly.

6.6 Connecting the devices

A laptop has been used to connect to the prototype before an Android device is used. A simple
terminal application (in this case minicom) should work just fine to test the communication. But first
the 2 devices have to be connected.

The control board features a pin header for connecting the IOIO board. This header can be used to
connect the prototype, although as can be seen in fig. 20 the interface is designed for 3.3 V but the
prototype operates at 5 V. Normally the 3.3 V are provided by the IOIO board and are passed to the
control board over a wire using the same pin header. Hence the according pin can be connected
to a 5 V source so both sides of the level converter are operating at 5 V. Apart from the I2C wires
ground must be connected. The prototype itself will be powered by the laptop in this case so there
is no need to pass 5 V from the control board.

6.6. CONNECTING THE DEVICES 33

First Character Parameters Description
‘w’ none Move forward
‘s’ none Stop
‘a’ none Turn left
‘d’ none Turn right
‘x’ none Move backward
‘-’ none Lower bar a few degree
‘+’ none Rise bar a few degree
‘r’ none LEDs on
‘e’ none LEDs off
‘q’ none Read sensors
‘u’ red, blue set LED brightness
‘i’ left, right set motor velocity
‘o’ level set bar elevation
‘h’ none get odometry data
‘j’ xlow, xheigh, ylow, yheigh, αlow, αheigh set odometry
‘k’ distance drive request (odometry)
‘l’ angel turn request (odometry)
‘m’ sendsize, readsize, payload custom I2C command

Table 4: Available commands

Figure 20: I2C bus schematic on the control board

As a side note, there was no need for a level converter in the first place. The I2C bus operates
by using pull-up resistors to indicate a logical 1. Therefore all devices have to set their pins to a
high resistive state (also called tristate) where the voltage level only raises via the pull-up resistors.
Connecting the pull-ups to a 3.3 V source will allow device which operate at 3.3 V as well as device
which operate at 5 V to access the bus. This is possible because 3.3 V will still be recognized as
logical 1 by 5 V operating devices. And since these devices do not apply 5 V to the bus, they will not
damage their neighbors.

After connecting everything the FT232 chip is recognized by the laptop and provides a serial (COM
under windows) device which can be used to communicate with the prototype. Upon entering com-
mands in a terminal the prototype receives the commands and forwards them accordingly. The robot
starts moving when the forward command is issued, hence a successful communication has been
achieved. Note that some terminals require a key combination like <CTRL>+j to send a line feed

34 CHAPTER 6. ATMEGA32 PROTOTYPE

character.

Next a Nexus 5 Android phone is connected to the prototype after disconnecting the laptop. The
Nexus 5 is preferred to the Nexus 4 because the later one has some issues with USB OTG which
is mandatory for this setup. For testing purposes a serial terminal1 available from the Android Play
store is used for communication. According to the description this application is compatible with the
used FTDI chip. Similar to the setup using the laptop the phone is able to connect to the prototype,
issue commands and hence control the robot.

This prototype may not seem as simple as the first one, but in comparison this one provides a much
higher degree of extensibility. Now everything which supports UART can directly connect to the
robot. Every phone which is capable of USB OTG can connect to the robot via a tiny converter.
Phones which do not support OTG can still use Bluetooth. Because these communication channels
do not rely on Android specific hardware / software they can be considered independent with respect
to changes introduced by upcoming Android versions.

6.7 Final Board

Figure 21: Final board - top view including annotations

Figure 22: USB to serial 5 V converter - breakout board

1USB Serial Monitor Lite (https://play.google.com/store/apps/details?id=jp.ksksue.app.terminal)

https://play.google.com/store/apps/details?id=jp.ksksue.app.terminal
https://play.google.com/store/apps/details?id=jp.ksksue.app.terminal

6.7. FINAL BOARD 35

The final board as can be seen in fig. 21 is very similar to the prototype, although has been simplified
even further. Still an ATmega32 is used running the same firmware, but the FT232BL chip has been
removed from the board to ensure a smaller footprint. Instead of the FT232BL chip, fully assembled
breakout boards will be used, these breakout boards are much smaller and hold a FT232RQ which is
very similar to the one used until now. These breakout boards are provided by FTDI and can be found
under the designation TTL-232R-PCB. Figure 22 shows a picture of this breakout board which has
already soldered some wires to it so it can be plugged into the communication board.

The layout of the board has been changes to match the IOIO boards exact footprint. Due to identical
size and exact same drill hole diameter and positions the IOIO board can be replaced with the new
communication board without touching the current mechanical setup of the robot. The pin headers,
as can be viewed in fig. 23, show the amount of simplifications. The bigger ISP header has been
replaced with the smaller ICSP header. There are now single connectors for the I2C bus, PWM
output and power supply (last one is designated as robot). The UART header can be used to
connect either the breakout board or a Bluetooth module.

Figure 23: Final board headers

36 CHAPTER 6. ATMEGA32 PROTOTYPE

Chapter 7

RobotWASD App

Introduction

This chapter describes the Android app which has been created to provide easy access to the
robot. After going through the code the Android manifest will be explained together with permission
acquiring mechanism.

7.1 Requirements

This Android app has to serve as a simple example which can be used by students. The app shows
them how to control the robot from an Android phone and provides basic functions which can be
copied to their application. Error handling should be kept to a minimum since it only obfuscates the
code.

Apart from providing clean example code, it should be easy to maintain and easy to extend.

7.2 FTDriver

The FTDriver1 library makes it easy to connect the FT232 USB to serial convert to the Android
phone. It provides a typical serial interface which can be used for byte oriented reading and writing.
The project’s README file contains some examples and should be considered if more information
is needed. It is recommended to grab the latest version of the library using Git2 for compatibility
reasons.

After downloading the library has to be linked in Eclipse in the Java build path section of the actual
app as well as inside the Android settings. The Android settings for the project are used to select
which SDK version is used, and for linking other projects. The library can be opened by Eclipse as
Android project and then be added as related project.

1see https://github.com/ksksue/FTDriver
2see http://git-scm.com/

37

https://github.com/ksksue/FTDriver
http://git-scm.com/

38 CHAPTER 7. ROBOTWASD APP

Eclipse will have problems compiling the app if the library cannot be found in Java’s build path. But
if the library is not linked to the project the SDK tools will not add it to the .apk package. Hence the
app will throw a ClassNotFoundException as soon as it is run.

7.3 App

For documentation purposes as well as to provide easy access to the new communication board,
a small Android app has been created. This app can control the robot via the new hardware. But
before details about the app can be explained, lets have a look at the following requirements. In
the appendix details for setting up the required environment for usage and development are de-
scribed.

Figure 24: RobotWASD app screenshot

A screenshot can be observed in Figure 24. It might not be very stylish but it provides all things
needed and does not obfuscate the code by applying a special design.

The view is divide into two segments. The upper segments holds multiple buttons which can be
used to control the robot. Note that the buttons have been labeled similar to their related commands
(table 4). The lower part contains a textbox which will show received data and can be used for
logging purposes as well.

When the app is started an instance of the FTDriver class has to be created, this is done via An-
droid’s UsbManager. After creating this instance, a connection method is called which opens a
connection with the desired baud rate as can be seen in listing 10.

A wrapper function has been created to prevent writing to a closed connection, see listing 11.

Due to multiple buffering the read() command has to be issued at least three times to ensure
new data is read. Since this behavior might confuse some students, it is hidden inside a wrapper
function, see listing 12.

7.4. MANIFEST AND USB PERMISSION 39

1 public class MainActivity extends Activity {
2 private FTDriver com;
3 private TextView textLog;
4
5 @Override
6 protected void onCreate(Bundle savedInstanceState) {
7 super.onCreate(savedInstanceState);
8 setContentView(R.layout.activity_main);
9

10 textLog = (TextView) findViewById(R.id.textLog);
11
12 com = new FTDriver((UsbManager) getSystemService(USB_SERVICE));
13
14 connect();
15 }
16
17 public void connect() {
18 if (com.begin(9600)) {
19 textLog.append("connected\n");
20 } else {
21 textLog.append("could not connect\n");
22 }
23 }
24 }

Listing 10: Instantiation of the FTDriver class

1 public void comWrite(byte[] data) {
2 if (com.isConnected()) {
3 com.write(data);
4 } else {
5 textLog.append("not connected\n");
6 }
7 }

Listing 11: wrapper for write method

Since it is quite common to issue a command and wait for the response a helper function has been
created which writes data to the interfaces, waits a few milliseconds and then returns the received
answer, see listing 13.

Building on top of these functions robot control becomes much easier. The three methods defined
in listing 14 control the robot from a high level perspective.

Sensor data can be retrieved via the ’q’ command. The onClick method for the Sensor button
(listing 15) will issue this command. The returning string contains measurements of all sensors
formated as space separated hex values, each prepended with 0x.

7.4 Manifest and USB Permission

Each Android app has a manifest which contains meta data about itself. This manifest is written
in XML3 and contains important settings like the minimum supported SDK version or which permis-
sions are required. [9, /guide/topics/manifest/manifest-intro.html].

The complete manifest can be observed in listing 16. Here the app is granted USB host permis-
sion via the <uses-feature /> tag. But that is not enough. When using a USB device from
an Android app the app needs special permissions to access the USB device. This goes beyond
a simple uses feature usb host call. There are two ways how to obtain this special per-
missions. First the easy way like it is used in this app. By adding an <intent-filter> tag
the manifest tells the Android OS when this app should be launched. Here the manifest states
when a USB_DEVICE_ATTACHED event occurs and the connected device matches an entry in-
side res/xml/device_filter.xml the app should be launched. Listing 17 shows the content

3eXtensible Markup Language

40 CHAPTER 7. ROBOTWASD APP

1 public String comRead() {
2 String s = "";
3 int i = 0;
4 int n = 0;
5 while (i < 3 || n > 0) {
6 byte[] buffer = new byte[256];
7 n = com.read(buffer);
8 s += new String(buffer, 0, n);
9 i++;

10 }
11 return s;
12 }

Listing 12: wrapper for read method, hide multi buffering

1 public String comReadWrite(byte[] data) {
2 com.write(data);
3 try {
4 Thread.sleep(100);
5 } catch (InterruptedException e) {
6 // ignore
7 }
8 return comRead();
9 }

Listing 13: write then read helper

of this filter file. It contains an entry for the FT232 chip. Now the app will launch as soon as a
FT232 chip is connected to the phone using an USB OTG cable. The Android OS grants the app
permissions automatically. [9, /guide/topics/connectivity/usb/host.html#working-d]

The other way of obtaining the required permissions is by requesting them as they are needed. [9,
/guide/topics/connectivity/usb/host.html#permission-d] shows an example of this use case including
all information required.

7.4. MANIFEST AND USB PERMISSION 41

1 public void robotSetLeds(byte red, byte blue) {
2 logText(comReadWrite(new byte[] { ’u’, red, blue, ’\r’, ’\n’ }));
3 }
4
5 public void robotSetVelocity(byte left, byte right) {
6 logText(comReadWrite(new byte[] { ’i’, left, right, ’\r’, ’\n’ }));
7 }
8
9 public void robotSetBar(byte value) {

10 logText(comReadWrite(new byte[] { ’o’, value, ’\r’, ’\n’ }));
11 }

Listing 14: methods for controlling the robot

1 public void buttonSensor_onClick(View v) {
2 logText(comReadWrite(new byte[] { ’q’, ’\r’, ’\n’ }));
3 }

Listing 15: methods for controlling the robot

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="at.ac.uibk.robotwasd"
4 android:versionCode="1"
5 android:versionName="1.0" >
6
7 <uses-sdk
8 android:minSdkVersion="16"
9 android:targetSdkVersion="19" />

10
11 <uses-feature android:name="android.hardware.usb.host" />
12
13 <application
14 android:allowBackup="true"
15 android:icon="@drawable/ic_launcher"
16 android:label="@string/app_name"
17 android:theme="@style/AppTheme" >
18 <activity
19 android:name="at.ac.uibk.robotwasd.MainActivity"
20 android:label="@string/app_name" >
21 <intent-filter>
22 <action android:name="android.intent.action.MAIN" />
23
24 <category android:name="android.intent.category.LAUNCHER" />
25
26 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
27 </intent-filter>
28
29 <meta-data
30 android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
31 android:resource="@xml/device_filter" />
32 </activity>
33 </application>
34 </manifest>

Listing 16: Android manifest of the RobotWASD app

1 <?xml version="1.0" encoding="utf-8"?>
2 <resources>
3 <!-- 0x0403 / 0x6001: FTDI FT232R UART -->
4 <usb-device vendor-id="1027" product-id="24577" />
5 </resources>

Listing 17: Android device filter for intent startup

42 CHAPTER 7. ROBOTWASD APP

Chapter 8

Conclusion

An open source microcontroller board named IOIO has been used for the communication process
between the robot and an Android phone in the past. The multithreaded API and Android de-
pendency has lead to various problems ranging from simple connection issues to race conditions
between Android threads. A custom protocol has been used for communication over USB which
made it difficult to simply replace the communication board.

The evaluation process shows two possible solutions which can be used to resolve problems in the
described setup. The first prototype does not work fully as intended but was already an improvement
to the IOIO board. Problems occurred when using the prototype with different Android versions. The
second prototype performs much better and brings some new benefits along. The final solution is
very close to this prototype. The software part is nearly identical only the hardware has been altered
a little.

Apart from the firmware other software has been created. In order to provide easy access an
Android application is provided which can control the robot using the new setup. Android application
and firmware are designed in a simple and modular fashion so other people can build upon this
setup.

Overall the project can be considered a success. All 16 robots have been fitted with a final board
(section 6.7), replacing the IOIO board. The overall experience has been enhanced thanks to the
much simpler communication platform.

But there are still issues left to solve, this project is just a single iteration in a longer sequence of
improvements. Apart from mechanical tuning further steps could focus on combining the communi-
cation board and the control board. This would simplify the whole internal setup and would create
enough room to place an embedded system on top of the robot.

43

44 CHAPTER 8. CONCLUSION

Bibliography

[1] Arduino SA. Arduino webpage. http://arduino.cc, 2014. Retrieved April 15, 2014.

[2] Atmel. Avr910: In-system programming. http://www.atmel.com/Images/doc0943.pdf, 1997. Retrieved April 15, 2014.

[3] Atmel. Atmega32 datasheet, 2011. Retrieved April 15, 2014.

[4] Atmel. Atmega644 datasheet, 2011. Retrieved April 15, 2014.

[5] BeagleBoard.org Foundation. Beagleboard.org webpage. http://beagleboard.org,
2014. Retrieved April 15, 2014.

[6] Ytai Ben-Tsvi. Ioio wiki. https://github.com/ytai/ioio/wiki, 2013. Retrieved April
15, 2014.

[7] Future Technology Devices International Ltd. Ft232bl datasheet, 2011. Retrieved April 15,
2014.

[8] Future Technology Devices International Ltd. Ft311d datasheet, 2013. Retrieved April 15,
2014.

[9] Google. Android developer webpage. http://developer.android.com, 2014. Re-
trieved April 15, 2014.

[10] Joerg Wunsch. avrdude manpage, 2014. Retrieved April 15, 2014.

[11] Raspberry Pi Foundation. Raspberry pi webpage. http://www.raspberrypi.org, 2014.
Retrieved April 15, 2014.

[12] SHARP. Gp2y0a21yk0f datasheet, 2007. Retrieved April 15, 2014.

[13] STMicroelectronics. Vnh3sp30-e datasheet, 2007. Retrieved April 15, 2014.

45

http://arduino.cc
http://www.atmel.com/Images/doc0943.pdf
http://www.atmel.com/Images/doc0943.pdf
http://beagleboard.org
https://github.com/ytai/ioio/wiki
http://developer.android.com
http://www.raspberrypi.org

46 BIBLIOGRAPHY

Appendix A

Additional Information

A.1 Assembly Files

Altium designer has been used to create the required schematics and PCB layouts in this project.
All non-standard components have been created in the process and are stored in a library which
is available in the altium/lib folder. All Altium projects used in this work use the non-standard
components from this library.

A.2 AVR Flashing

After writing, compiling and linking a microcontroller program, the resulting binary file has to be
flashed on the chip. A hardware programmer and a software utility are required for this task. One
end of the hardware programmer can connect to your computer’s USB or RS232 port the other end
is connected to the microcontroller. The software utility is used to control the hardware programmer
and feed it with compiled binary file.

A chip ISP programmer in combination with the avrdude utility has been used for programming
the prototypes. When connecting the ISP programmer to the computer running Ubuntu via USB, a
new device /dev/ttyACM0 is available. avrdude accesses this device. It also needs to know
which microcontroller will be programmed and which protocol is used for talking to the hardware
programmer.

The most important parameter for calling avrdude is the -U flag. It tells avrdude which memory
on the microcontroller should be read or written. A call for flashing the compiled binary file looks like
this.

avrdude -p m32 -P /dev/ttyACM0 -c avrisp2 -B 10\-U flash:w:hex
flash:w:hex means write the content of the file named hex to the flash memory of the micro-
controller.

More information about avrdude and its parameters can be retrieved from [10].

47

48 APPENDIX A. ADDITIONAL INFORMATION

A.3 AVR Fuses

AVR microcontrollers feature 2 or 3 special registers which are used to configure general settings
for the microcontroller. By setting these fuses one select the clock source for the microcontroller or
disable programming entirely. A detailed description for the ATmega32 can be found in [3, p. 257],
for the ATmega644 in [4, p. 285].

Following avrdude call was used for setting the fuses on the ATmega32.

avrdude -p m32 -P /dev/ttyACM0 -c avrisp2 -B 10\-U lfuse:w:0xbf:m -U hfuse:w:0x89:m

A.4 Setup Development Environment

Certain tools are required when developing an Android application, basically the Android SDK1

covers everything needed, but an IDE2 can help a lot and provide some comfortable shortcuts.
For this application Eclipse has been chosen as IDE because Google recommended at the time
development started. There is a plug-in available which will be used in combination with the SDK to
move compiled application to the phone and debug them.

The starting point is a fresh installation of Ubuntu3 13.10 (64 bit). First we start by installing the
Eclipse IDE using the system’s package manager. Enter following command in a terminal.

sudo apt-get install eclipse
This will issue the package manager to download the eclipse package including all its dependencies
and installing it on the system. After the command terminates eclipse should be installed and can
be opened via the launcher.

As a side note, Google provides a complete package which includes the Eclipse IDE, Android SDK
and the Android plug-in for Eclipse already setup. Though this might seem handy, the author does
not recommend using it since the Eclipse version shipped with this package might not be fully com-
patible with your system. Where in contrast the package maintainers will provide you with an Eclipse
version suitable for your system.

Next the Android plug-in can be added right away even though the SDK is not yet installed. Start
Eclipse and select Install New Software from the menu bar’s Help section. This will open
a new window which enables you to install various Eclipse plug-ins from different sources. Now the
source for the Android plug-in has to be provided. Click the Add button beside Work with: in the
new window. Enter a sensible name and following link as location, then hit Ok.

https://dl-ssl.google.com/android/eclipse/
Now select the newly added entry and Eclipse will update the available package list. Check theDeveloper Tools group4 and continue with the installation.

After the installation has been completed, the plug-in will complain about not finding the Android
SDK. This will now be fixed. Go to [9, /sdk/index.html] and download the SDK Tools from the SDK

1Software Development Kit
2Integrated Development Environment
3http://www.ubuntu.com/
4check Group items by category if the named group does not show up

https://dl-ssl.google.com/android/eclipse/
http://www.ubuntu.com/

A.4. SETUP DEVELOPMENT ENVIRONMENT 49

Tools Only section. Of course chose the package for Linux (Platform).

This package contains a tool which is used to grab the desired Android SDK version from a Google
server. But since the binaries are only available for a 32 bit architecture we have to install some
additional libraries (multilibs) to use them with the 64 bit kernel. Extract and run this tool afterwards.
These commands with fulfil the described tasks.

sudo apt-get install libc6-i386 lib32stdc++6 \lib32gcc1 lib32ncurses5
tar xzvf android-sdk_*-linux.tgzandroid-sdk-linux/tools/android

A new window opens which holds a listing of released Android SDK versions. Tick the check-
box beside the desired SDK version. If unsure check the version installed on your Android phone.
Therefore enter the Settings menu on the phone and scroll down to the System section. TapAbout phone and observe the Android version bullet. Continue by installing the ticked SDK. You
can also installed multiple SDK versions side by side, this can be useful when handling multiple
phones.

All new files will be installed inside the android-sdk-linux directory. Most tools which require
access to the Android SDK will only need to know the path to this directory. This is also true
for Eclipse. You can state the Android SDK path inside Eclipse’s settings. Open Preferences
available from the menu bar’s Window section. On the left hand side an entry should be present
named Android. Click this entry, now you can state the Android SDK path on the right hand side
of the window, installed SDK versions will be listed below.

The most important tool contained in the Android SDK is the adb5 binary. This tool starts a daemon
which your phone can connect to via USB. Furthermore apps can pushed onto the phone and can
be debugged via adb. This tool sits in android-sdk-linux/platform-tools/. Make sure
to start the server with root privileges, this can be achieved with the following command. There is
also a kill-server option to stop an already running server.

sudo android-sdk-linux/platform-tools/adb start-server
If you are not comfortable with running this tool under root privileges, you can run it as normal user,
but you have to add special rules to udev otherwise the tool is not allowed to access the USB device
by your system. Listing 18 shows an example.

HTC Desire HD
SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", ATTR{idProduct}=="0ca2", \
SYMLINK+="android_adb"
SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", ATTR{idProduct}=="0fff", \
SYMLINK+="android_fastboot"

Listing 18: udev example rules (/etc/udev/rules.d/51-android.rules) (lines have been
wrapped for printing)

5Android Debug Bridge

50 APPENDIX A. ADDITIONAL INFORMATION

A.5 Setup Android Phone

In order to use the Android phone for development the Developer options have to be activated.
Go to the About phone inside the Settings menu. Scroll down until you see the entry namedBuild number and tap this entry multiple times (about 20 times or so) until a message appears
notifying you that developer options have been enabled.

A new entry named Developer options is now available inside the Settings menu. Inside
this new entry you can choose to enable Android debugging. This is necessary to connect the
Android phone to your system, hence enable this option.

Now connect the phone to your system via USB and a message should appear notifying you that
debugging has been enabled. You are also required to grant the connected computer access to the
phone.

The phone should now be visible when using the adb tool. Following command will list connected
devices. You do not have to run the tool with root privileges when the server is already running
as root. If the server is not running it will be started as soon as adb is used for phone related
tasks.

android-sdk-linux/platform-tools/adb devices

A.6 Python Example

1 #!/usr/bin/env python
2
3 import serial
4
5 s = serial.Serial(’/dev/ttyUSB0’, 9600)
6
7 while True:
8 s.write("q\r\n")
9 s.readline()

10 print s.readline(),
11
12 s.close()

For the sake of debugging a small python script has been created and stored inside the utils
folder. This script opens a serial device present at /dev/ttyUSB0 and issues the sensor com-
mand in an infinite loop. This script can be used for debugging the sensors and shows how simple
commands can be issued from a python script.

A.7 OpenCV Example

The OpenCV library provides useful tools for machine learning and image processing. It is available
for Android and comes with some examples. Using the robot control functions defined in the Robot-
WASD app together with the image processing API from the OpenCV library it should be easy to
setup a autonomous unit.

A.8. NEXUS 4 ENABLE OTG 51

A.8 Nexus 4 enable OTG

Not all Android phones feature USB OTG. There are phones using a USB chip which is not capable
of switching to USB host mode, others simply got this feature disabled by their firmware for not fully
meeting the required specifications.

The Nexus 4’s USB chip is capable of switching to USB host mode, but because the phone lacks
the ability to provided power this feature has been disabled. But there is a patch available on the
xda-devleopers forum6. Just follow this post, it will explain everything needed to get the Nexus 4
working with OTG.

Because the USB sense pin is not properly wired up to the USB chip, applying 5 V to the USB VCC

pin will trigger the switching to USB host mode. Your phone will drain power like it does when it is
getting charged. See the Bugs / Notes section in the mentioned post. It contains a system call
which can be used to disable charging temporarily.

6http://forum.xda-developers.com/nexus-4/orig-development/usb-otg-externally-powered-usb-otg-t2181820

http://forum.xda-developers.com/nexus-4/orig-development/usb-otg-externally-powered-usb-otg-t2181820

52 APPENDIX A. ADDITIONAL INFORMATION

Appendix B

Assembly Drawings

B.1 FT311D in I2C Configuration

53

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2014-05-06 Sheet of
File: \\..\usb_i2c.SchDoc Drawn By:

VBUS 1

D- 2

D+ 3

GND 4

USB

GND

27

R3

27

R5

47p
C4

47p
C5

USBn

USBp

GND GND

V
C

C
2

A
V

C
C

3

XTIN4

XTOUT5

G
N

D
6

V
R

EG
O

U
T

7
TE

ST
1

8

TE
ST

2
9

RESET# 10

TEST011

CNFG012

CNFG114

CNFG215

V
C

C
IO

13

G
N

D
16

USB+17

USB-18

G
N

D
19

V
C

C
IO

22

IOBUS0 23

IOBUS1 24

IOBUS2 25

IOBUS3 26

G
N

D
27

V
C

C
IO

28

IOBUS4 29

IOBUS5 30

IOBUS6 31

USBERR 32

G
N

D
1

FT311D

FT311D

GND

GND

10k

R4
3V3

100n

C1
GND

USBn
USBp

SCL
SDA

Cry

12MHz

27p
C6

27p
C7

GND GND

3V3

GND

3V3

3V3

10k
R1

100n
C3

GND

RESET RESET

1
2
3
4

P1

Header 4

GND

VCC
SDA
SCL

Vin Vout
GND

3V3
LD1117V33C

GND

3V3VCC

10u
C9

4.7u

C2 600 / 0.5A
R2

VCC

GND

10u
C8

GND

no pull-ups provided

FT311D I2C configuration

Alexander Hirsch

PI3V301

PI3V302PI3V303

CO3V3

PIC101 PIC102

COC1

PIC201PIC202

COC2

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC801

PIC802
COC8 PIC901

PIC902
COC9

PICry01 PICry02

COCry

PIFT311D01

PIFT311D02PIFT311D03

PIFT311D04

PIFT311D05

PIFT311D06

PIFT311D07

PIFT311D08

PIFT311D09

PIFT311D010

PIFT311D011

PIFT311D012

PIFT311D013

PIFT311D014

PIFT311D015

PIFT311D016

PIFT311D017

PIFT311D018

PIFT311D019

PIFT311D022

PIFT311D023

PIFT311D024

PIFT311D025

PIFT311D026

PIFT311D027

PIFT311D028

PIFT311D029

PIFT311D030

PIFT311D031

PIFT311D032

COFT311D

PIP101

PIP102

PIP103

PIP104

COP1

PIR101

PIR102
COR1

PIR201

PIR202
COR2

PIR301 PIR302

COR3

PIR401 PIR402
COR4

PIR501 PIR502

COR5
PIUSB01

PIUSB02

PIUSB03

PIUSB04

PIUSB05

PIUSB06

COUSB

PI3V302

PIC901

PIFT311D02 PIFT311D09PIFT311D013 PIFT311D022 PIFT311D028
PIR102

PIR401

PI3V301

PIC101

PIC202

PIC302

PIC401 PIC501

PIC601 PIC701PIC802 PIC902 PIFT311D01 PIFT311D06PIFT311D08

PIFT311D015

PIFT311D016 PIFT311D019 PIFT311D027

PIP104

PIUSB04

PIUSB05

PIUSB06

PIC102

PIFT311D03PIFT311D07
PIC201

PIR201

PIUSB01

PIC402

PIR301

PIUSB02

PIC502
PIR501PIUSB03

PIC602
PICry01

PIFT311D04

PIC702
PICry02 PIFT311D05

PIFT311D011

PIFT311D012

PIFT311D014

PIR402

PIFT311D025

PIFT311D026

PIFT311D029

PIFT311D030

PIFT311D031

PIFT311D032

PIC301PIFT311D010
PIR101

PIFT311D023

PIP103

PIFT311D024

PIP102

PIFT311D018PIR302

PIFT311D017

PIR502

PI3V303

PIC801

PIP101

PIR202

PA3V303PA3V302PA3V301

CO3V3

PAC101PAC102 COC1

PAC201PAC202
COC2

PAC301 PAC302 COC3

PAC401 PAC402
COC4

PAC501PAC502
COC5

PAC601 PAC602 COC6

PAC701PAC702 COC7

PAC802PAC801

COC8

PAC902PAC901

COC9

PACry02PACry01

COCry

PAFT311D032
PAFT311D031

PAFT311D030
PAFT311D029
PAFT311D028
PAFT311D027

PAFT311D026
PAFT311D025

PAFT311D024 PAFT311D023PAFT311D022 PAFT311D021 PAFT311D020 PAFT311D019PAFT311D018 PAFT311D017
PAFT311D016
PAFT311D015

PAFT311D014

PAFT311D013
PAFT311D012
PAFT311D011

PAFT311D010

PAFT311D09

PAFT311D08PAFT311D07PAFT311D06PAFT311D05PAFT311D04PAFT311D03PAFT311D02PAFT311D01

COFT311D

PAP101 PAP102 PAP103 PAP104

COP1

PAR102PAR101 COR1

PAR201PAR202 COR2

PAR302 PAR301COR3

PAR402 PAR401COR4

PAR502 PAR501COR5

PAUSB03

PAUSB04

PAUSB02

PAUSB01

PAUSB06

PAUSB05

COUSB

PA3V302

PAC901PAFT311D02
PAFT311D09

PAFT311D013

PAFT311D022

PAFT311D028

PAR102

PAR401

PA3V301PAC101

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701
PAC802

PAC902PAFT311D01 PAFT311D06 PAFT311D08

PAFT311D015
PAFT311D016

PAFT311D019

PAFT311D027

PAP104

PAUSB04

PAUSB05

PAUSB06

PAC102

PAFT311D03 PAFT311D07

PAC201

PAR201 PAUSB01

PAC402

PAR301
PAUSB02

PAC502

PAR501
PAUSB03

PAC602

PACry01

PAFT311D04

PAC702PACry02

PAFT311D05

PAFT311D012

PAFT311D014 PAR402

PAC301

PAFT311D010 PAR101

PAFT311D023

PAP103

PAFT311D024

PAP102

PAFT311D018

PAR302

PAFT311D017 PAR502

PA3V303 PAC801

PAP101

PAR202

PA3V303PA3V302PA3V301

CO3V3

PAC101PAC102 COC1

PAC201PAC202
COC2

PAC301 PAC302 COC3

PAC401 PAC402
COC4

PAC501PAC502
COC5

PAC601 PAC602 COC6

PAC701PAC702 COC7

PAC802PAC801

COC8

PAC902PAC901

COC9

PACry02PACry01

COCry

PAFT311D032
PAFT311D031

PAFT311D030
PAFT311D029
PAFT311D028
PAFT311D027

PAFT311D026
PAFT311D025

PAFT311D024 PAFT311D023PAFT311D022 PAFT311D021 PAFT311D020 PAFT311D019PAFT311D018 PAFT311D017
PAFT311D016
PAFT311D015

PAFT311D014

PAFT311D013
PAFT311D012
PAFT311D011

PAFT311D010

PAFT311D09

PAFT311D08PAFT311D07PAFT311D06PAFT311D05PAFT311D04PAFT311D03PAFT311D02PAFT311D01

COFT311D

PAP101 PAP102 PAP103 PAP104

COP1

PAR102PAR101 COR1

PAR201PAR202 COR2

PAR302 PAR301COR3

PAR402 PAR401COR4

PAR502 PAR501COR5

PAUSB03

PAUSB04

PAUSB02

PAUSB01

PAUSB06

PAUSB05

COUSB

PA3V302

PAC901PAFT311D02
PAFT311D09

PAFT311D013

PAFT311D022

PAFT311D028

PAR102

PAR401

PA3V301PAC101

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701
PAC802

PAC902PAFT311D01 PAFT311D06 PAFT311D08

PAFT311D015
PAFT311D016

PAFT311D019

PAFT311D027

PAP104

PAUSB04

PAUSB05

PAUSB06

PAC102

PAFT311D03 PAFT311D07

PAC201

PAR201 PAUSB01

PAC402

PAR301
PAUSB02

PAC502

PAR501
PAUSB03

PAC602

PACry01

PAFT311D04

PAC702PACry02

PAFT311D05

PAFT311D012

PAFT311D014 PAR402

PAC301

PAFT311D010 PAR101

PAFT311D023

PAP103

PAFT311D024

PAP102

PAFT311D018

PAR302

PAFT311D017 PAR502

PA3V303 PAC801

PAP101

PAR202

PA3V303PA3V302PA3V301

CO3V3

PAC101PAC102 COC1

PAC201PAC202
COC2

PAC301 PAC302 COC3

PAC401 PAC402
COC4

PAC501PAC502
COC5

PAC601 PAC602 COC6

PAC701PAC702 COC7

PAC802PAC801

COC8

PAC902PAC901

COC9

PACry02PACry01

COCry

PAFT311D032
PAFT311D031

PAFT311D030
PAFT311D029
PAFT311D028
PAFT311D027

PAFT311D026
PAFT311D025

PAFT311D024 PAFT311D023PAFT311D022 PAFT311D021 PAFT311D020 PAFT311D019PAFT311D018 PAFT311D017
PAFT311D016
PAFT311D015

PAFT311D014

PAFT311D013
PAFT311D012
PAFT311D011

PAFT311D010

PAFT311D09

PAFT311D08PAFT311D07PAFT311D06PAFT311D05PAFT311D04PAFT311D03PAFT311D02PAFT311D01

COFT311D

PAP101 PAP102 PAP103 PAP104

COP1

PAR102PAR101 COR1

PAR201PAR202 COR2

PAR302 PAR301COR3

PAR402 PAR401COR4

PAR502 PAR501COR5

PAUSB03

PAUSB04

PAUSB02

PAUSB01

PAUSB06

PAUSB05

COUSB

PA3V302

PAC901PAFT311D02
PAFT311D09

PAFT311D013

PAFT311D022

PAFT311D028

PAR102

PAR401

PA3V301PAC101

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701
PAC802

PAC902PAFT311D01 PAFT311D06 PAFT311D08

PAFT311D015
PAFT311D016

PAFT311D019

PAFT311D027

PAP104

PAUSB04

PAUSB05

PAUSB06

PAC102

PAFT311D03 PAFT311D07

PAC201

PAR201 PAUSB01

PAC402

PAR301
PAUSB02

PAC502

PAR501
PAUSB03

PAC602

PACry01

PAFT311D04

PAC702PACry02

PAFT311D05

PAFT311D012

PAFT311D014 PAR402

PAC301

PAFT311D010 PAR101

PAFT311D023

PAP103

PAFT311D024

PAP102

PAFT311D018

PAR302

PAFT311D017 PAR502

PA3V303 PAC801

PAP101

PAR202

58 APPENDIX B. ASSEMBLY DRAWINGS

B.2 FT311D in UART Configuration

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2014-05-06 Sheet of
File: \\..\usb_uart.SchDoc Drawn By:

VBUS 1

D- 2

D+ 3

GND 4

USB

GND

27

R3

27

R5

47p
C4

47p
C5

USBn

USBp

GND GND

V
C

C
2

A
V

C
C

3

XTIN4

XTOUT5

G
N

D
6

V
R

EG
O

U
T

7
TE

ST
1

8

TE
ST

2
9

RESET# 10

TEST011

CNFG012

CNFG114

CNFG215

V
C

C
IO

13

G
N

D
16

USB+17

USB-18

G
N

D
19

V
C

C
IO

22

IOBUS0 23

IOBUS1 24

IOBUS2 25

IOBUS3 26

G
N

D
27

V
C

C
IO

28

IOBUS4 29

IOBUS5 30

IOBUS6 31

USBERR 32

G
N

D
1

FT311D

FT311D

GND

GND

10k

R4
3V3

100n

C1
GND

USBn
USBp

TXD
RXD

Cry

12MHz

27p
C6

27p
C7

GND GND

3V3

GND

3V3

3V3

10k
R1

100n
C3

GND

RESET RESET

1
2
3
4

P1

Header 4

GND

VCC

TXD
RXD

Vin Vout
GND

3V3
LD1117V33C

GND

3V3VCC

10u
C9

4.7u

C2 600 / 0.5A
R2

VCC

GND

10u
C8

GND

FT311D + UART configuration

Alexander Hirsch

PI3V301

PI3V302PI3V303

CO3V3

PIC101 PIC102

COC1

PIC201PIC202

COC2

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC801

PIC802
COC8 PIC901

PIC902
COC9

PICry01 PICry02

COCry

PIFT311D01

PIFT311D02PIFT311D03

PIFT311D04

PIFT311D05

PIFT311D06

PIFT311D07

PIFT311D08

PIFT311D09

PIFT311D010

PIFT311D011

PIFT311D012

PIFT311D013

PIFT311D014

PIFT311D015

PIFT311D016

PIFT311D017

PIFT311D018

PIFT311D019

PIFT311D022

PIFT311D023

PIFT311D024

PIFT311D025

PIFT311D026

PIFT311D027

PIFT311D028

PIFT311D029

PIFT311D030

PIFT311D031

PIFT311D032

COFT311D

PIP101

PIP102

PIP103

PIP104

COP1

PIR101

PIR102
COR1

PIR201

PIR202
COR2

PIR301 PIR302

COR3

PIR401 PIR402
COR4

PIR501 PIR502

COR5
PIUSB01

PIUSB02

PIUSB03

PIUSB04

PIUSB05

PIUSB06

COUSB

PI3V302

PIC901

PIFT311D02 PIFT311D09PIFT311D013 PIFT311D022 PIFT311D028
PIR102

PIR401

PI3V301

PIC101

PIC202

PIC302

PIC401 PIC501

PIC601 PIC701PIC802 PIC902 PIFT311D01 PIFT311D06PIFT311D08

PIFT311D014

PIFT311D015

PIFT311D016 PIFT311D019 PIFT311D027

PIP104

PIUSB04

PIUSB05

PIUSB06

PIC102

PIFT311D03PIFT311D07
PIC201

PIR201

PIUSB01

PIC402

PIR301

PIUSB02

PIC502
PIR501PIUSB03

PIC602
PICry01

PIFT311D04

PIC702
PICry02 PIFT311D05

PIFT311D011

PIFT311D012PIR402

PIFT311D025

PIFT311D026

PIFT311D029

PIFT311D030

PIFT311D031

PIFT311D032

PIC301PIFT311D010
PIR101

PIFT311D024

PIP102

PIFT311D023

PIP103PIFT311D018PIR302

PIFT311D017

PIR502

PI3V303

PIC801

PIP101

PIR202

PA3V301 PA3V302 PA3V303

CO3V3

PAC102 PAC101 COC1

PAC202 PAC201
COC2

PAC302PAC301 COC3

PAC402PAC401
COC4

PAC502 PAC501
COC5

PAC602PAC601 COC6

PAC702 PAC701 COC7
PAC801 PAC802

COC8

PAC901 PAC902

COC9

PACry01 PACry02

COCry

PAFT311D01 PAFT311D02PAFT311D03 PAFT311D04 PAFT311D05 PAFT311D06PAFT311D07 PAFT311D08
PAFT311D09
PAFT311D010

PAFT311D011
PAFT311D012
PAFT311D013
PAFT311D014

PAFT311D015
PAFT311D016

PAFT311D017PAFT311D018PAFT311D019PAFT311D020PAFT311D021PAFT311D022PAFT311D023PAFT311D024
PAFT311D025
PAFT311D026

PAFT311D027

PAFT311D028
PAFT311D029
PAFT311D030

PAFT311D031

PAFT311D032

COFT311D

PAP104PAP103PAP102PAP101

COP1

PAR101 PAR102COR1

PAR202 PAR201COR2

PAR301PAR302 COR3

PAR401PAR402 COR4

PAR501PAR502 COR5
PAUSB05

PAUSB06
PAUSB01

PAUSB02

PAUSB04

PAUSB03
COUSB

PA3V302

PAC901PAFT311D02
PAFT311D09

PAFT311D013

PAFT311D022

PAFT311D028

PAR102

PAR401

PA3V301PAC101

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701
PAC802

PAC902PAFT311D01 PAFT311D06 PAFT311D08

PAFT311D014

PAFT311D015
PAFT311D016

PAFT311D019

PAFT311D027

PAP104

PAUSB04

PAUSB05

PAUSB06

PAC102

PAFT311D03 PAFT311D07

PAC201

PAR201 PAUSB01

PAC402

PAR301
PAUSB02

PAC502

PAR501
PAUSB03

PAC602

PACry01

PAFT311D04

PAC702PACry02

PAFT311D05

PAFT311D012

PAR402

PAC301

PAFT311D010 PAR101

PAFT311D024

PAP102

PAFT311D023

PAP103

PAFT311D018

PAR302

PAFT311D017 PAR502

PA3V303 PAC801

PAP101

PAR202

PA3V301 PA3V302 PA3V303

CO3V3

PAC102 PAC101 COC1

PAC202 PAC201
COC2

PAC302PAC301 COC3

PAC402PAC401
COC4

PAC502 PAC501
COC5

PAC602PAC601 COC6

PAC702 PAC701 COC7
PAC801 PAC802

COC8

PAC901 PAC902

COC9

PACry01 PACry02

COCry

PAFT311D01 PAFT311D02PAFT311D03 PAFT311D04 PAFT311D05 PAFT311D06PAFT311D07 PAFT311D08
PAFT311D09
PAFT311D010

PAFT311D011
PAFT311D012
PAFT311D013
PAFT311D014

PAFT311D015
PAFT311D016

PAFT311D017PAFT311D018PAFT311D019PAFT311D020PAFT311D021PAFT311D022PAFT311D023PAFT311D024
PAFT311D025
PAFT311D026

PAFT311D027

PAFT311D028
PAFT311D029
PAFT311D030

PAFT311D031

PAFT311D032

COFT311D

PAP104PAP103PAP102PAP101

COP1

PAR101 PAR102COR1

PAR202 PAR201COR2

PAR301PAR302 COR3

PAR401PAR402 COR4

PAR501PAR502 COR5
PAUSB05

PAUSB06
PAUSB01

PAUSB02

PAUSB04

PAUSB03
COUSB

PA3V302

PAC901PAFT311D02
PAFT311D09

PAFT311D013

PAFT311D022

PAFT311D028

PAR102

PAR401

PA3V301PAC101

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701
PAC802

PAC902PAFT311D01 PAFT311D06 PAFT311D08

PAFT311D014

PAFT311D015
PAFT311D016

PAFT311D019

PAFT311D027

PAP104

PAUSB04

PAUSB05

PAUSB06

PAC102

PAFT311D03 PAFT311D07

PAC201

PAR201 PAUSB01

PAC402

PAR301
PAUSB02

PAC502

PAR501
PAUSB03

PAC602

PACry01

PAFT311D04

PAC702PACry02

PAFT311D05

PAFT311D012

PAR402

PAC301

PAFT311D010 PAR101

PAFT311D024

PAP102

PAFT311D023

PAP103

PAFT311D018

PAR302

PAFT311D017 PAR502

PA3V303 PAC801

PAP101

PAR202

PA3V301 PA3V302 PA3V303

CO3V3

PAC102 PAC101 COC1

PAC202 PAC201
COC2

PAC302PAC301 COC3

PAC402PAC401
COC4

PAC502 PAC501
COC5

PAC602PAC601 COC6

PAC702 PAC701 COC7
PAC801 PAC802

COC8

PAC901 PAC902

COC9

PACry01 PACry02

COCry

PAFT311D01 PAFT311D02PAFT311D03 PAFT311D04 PAFT311D05 PAFT311D06PAFT311D07 PAFT311D08
PAFT311D09
PAFT311D010

PAFT311D011
PAFT311D012
PAFT311D013
PAFT311D014

PAFT311D015
PAFT311D016

PAFT311D017PAFT311D018PAFT311D019PAFT311D020PAFT311D021PAFT311D022PAFT311D023PAFT311D024
PAFT311D025
PAFT311D026

PAFT311D027

PAFT311D028
PAFT311D029
PAFT311D030

PAFT311D031

PAFT311D032

COFT311D

PAP104PAP103PAP102PAP101

COP1

PAR101 PAR102COR1

PAR202 PAR201COR2

PAR301PAR302 COR3

PAR401PAR402 COR4

PAR501PAR502 COR5
PAUSB05

PAUSB06
PAUSB01

PAUSB02

PAUSB04

PAUSB03
COUSB

PA3V302

PAC901PAFT311D02
PAFT311D09

PAFT311D013

PAFT311D022

PAFT311D028

PAR102

PAR401

PA3V301PAC101

PAC202

PAC302

PAC401

PAC501

PAC601

PAC701
PAC802

PAC902PAFT311D01 PAFT311D06 PAFT311D08

PAFT311D014

PAFT311D015
PAFT311D016

PAFT311D019

PAFT311D027

PAP104

PAUSB04

PAUSB05

PAUSB06

PAC102

PAFT311D03 PAFT311D07

PAC201

PAR201 PAUSB01

PAC402

PAR301
PAUSB02

PAC502

PAR501
PAUSB03

PAC602

PACry01

PAFT311D04

PAC702PACry02

PAFT311D05

PAFT311D012

PAR402

PAC301

PAFT311D010 PAR101

PAFT311D024

PAP102

PAFT311D023

PAP103

PAFT311D018

PAR302

PAFT311D017 PAR502

PA3V303 PAC801

PAP101

PAR202

B.3. ATMEGA32 WITH FT232BL 63

B.3 ATmega32 with FT232BL

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2014-05-06 Sheet of
File: \\..\main.SchDoc Drawn By:

+5V

GND

GND

+5V

GND

ftdi_TxD
ftdi_RxD

D-

D+

crossed

GND

+5V
D-
D+

VBUS1

D-2

D+3

GND4

USB Con

470
R4

100n
C2

100n
C1

27R1

27R2

1k5R3

Cry2

6MHz EESK1

EEDATA2

V
C

C
3

RESET#4 RSTOUT#5

3V3OUT6

USBDP7

USBDM8

G
N

D
9

SLEEP# 10

RXLED# 11TXLED# 12

V
C

C
IO

13

PWRCTL 14

PWREN# 15

TXDEN 16

G
N

D
17

RI# 18DCD# 19DSR# 20DTR# 21CTS# 22RTS# 23RXD 24TXD 25

V
C

C
26

XTIN27

XTOUT28

A
G

N
D

29
A

V
C

C
30

TEST31

EECS32

IC2
FT232BL

FTDI

+5V

GND

GND
GND

+5V
+5V

reset

uC_RxD
uC_TxD

ATmega32

+5V

GND

PB0 (XCK/T0)1

PB1 (T1)2

PB2 (AIN0/INT2)3

PB3 (AIN1/OC0)4

PB4 (SS)5

PB5 (MOSI)6

PB6 (MISO)7

PB7 (SCK)8

RESET9

PD0 (RXD)14

PD1 (TXD)15

PD2 (INT0)16

PD3 (INT1)17

PD4 (OC1B)18

PD5 (OC1A)19

PD6 (ICP)20

PD7 (OC2)21

XTAL212

XTAL113 GND 11

PC0 (SCL) 22

PC1 (SDA) 23

PC2 (TCK) 24

PC3 (TMS) 25

PC4 (TDO) 26

PC5 (TDI) 27

PC6 (TOSC1) 28

PC7 (TOSC2) 29

AREF 32AVCC 30

GND 31

PA7 (ADC7) 33PA6 (ADC6) 34PA5 (ADC5) 35PA4 (ADC4) 36PA3 (ADC3) 37PA2 (ADC2) 38PA1 (ADC1) 39PA0 (ADC0) 40

VCC 10

IC1

ATmega3222p
C3

22p
C6

Cry1

16MHz

1k
R5

100n
C5
reset

sda
scl

oc1a
oc1b

miso
mosi

sck

GND GND

GND
mosi

miso
sck

reset

+5V

1
2

USB Pwr

Jumper

100n
C4

1
2
3
4

BT

GND
+5V

uC_RxD
uC_TxD

D-
D+
GND

+5V_USB

+5V_USB
+5V_USB

1
2
3
4

I2C

GND

+5V
sda
scl

1u
C7

+5V

GND

1 2
3 4

FTDI

ftdi_TxD
ftdi_RxD

uC_RxD
uC_TxD

1 2
3 4
5 6
7 8
9 10

ISP

GND
GND
GND

GND
GND

1
2
3
4
5

OTG

GND

ATmega32 + FT232BL

Alexander Hirsch

PIBT01

PIBT02

PIBT03

PIBT04

COBT

PIC101 PIC102
COC1

PIC201 PIC202
COC2

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PICry101 PICry102

COCry1

PICry201 PICry202

COCry2

PIFTDI01 PIFTDI02

PIFTDI03 PIFTDI04

COFTDI

PII2C01

PII2C02

PII2C03

PII2C04

COI2C

PIIC101

PIIC102

PIIC103

PIIC104

PIIC105

PIIC106

PIIC107

PIIC108

PIIC109

PIIC1010

PIIC1011

PIIC1012

PIIC1013

PIIC1014

PIIC1015

PIIC1016

PIIC1017

PIIC1018

PIIC1019

PIIC1020

PIIC1021

PIIC1022

PIIC1023

PIIC1024

PIIC1025

PIIC1026

PIIC1027

PIIC1028

PIIC1029

PIIC1030

PIIC1031

PIIC1032

PIIC1033

PIIC1034

PIIC1035

PIIC1036

PIIC1037

PIIC1038

PIIC1039

PIIC1040

COIC1

PIIC201

PIIC202

PIIC203

PIIC204

PIIC205

PIIC206

PIIC207

PIIC208

PIIC209

PIIC2010

PIIC2011

PIIC2012

PIIC2013

PIIC2014

PIIC2015

PIIC2016

PIIC2017

PIIC2018

PIIC2019

PIIC2020

PIIC2021

PIIC2022

PIIC2023

PIIC2024

PIIC2025

PIIC2026

PIIC2027

PIIC2028

PIIC2029

PIIC2030

PIIC2031

PIIC2032

COIC2

PIISP01 PIISP02

PIISP03 PIISP04

PIISP05 PIISP06

PIISP07 PIISP08

PIISP09 PIISP010

COISP

PIOTG01

PIOTG02

PIOTG03

PIOTG04

PIOTG05

COOTG

PIR101 PIR102
COR1

PIR201 PIR202
COR2

PIR301 PIR302COR3

PIR401

PIR402
COR4

PIR501

PIR502
COR5

PIUSB Con01

PIUSB Con02

PIUSB Con03

PIUSB Con04

PIUSB Con05

PIUSB Con06

COUSB Con

PIUSB Pwr01

PIUSB Pwr02

COUSB Pwr

PIBT04

PIC402

PIC701

PII2C01

PIIC1010

PIIC1030

PIIC203

PIIC204

PIIC2013PIIC2026
PIISP02

PIR402

PIR502

PIUSB Pwr01

PIOTG01

PIUSB Con01

PIUSB Pwr02

PIOTG03

PIR201

PIUSB Con03

PIOTG02

PIR101

PIUSB Con02

PIFTDI01

PIIC2024

PIFTDI03

PIIC2025

PIBT03

PIC101

PIC201

PIC301

PIC401

PIC501

PIC601

PIC702

PII2C04

PIIC1011

PIIC1031

PIIC209

PIIC2014

PIIC2017PIIC2029

PIIC2031

PIISP04

PIISP06

PIISP08

PIISP010

PIOTG04

PIOTG05

PIUSB Con04

PIUSB Con05

PIUSB Con06

PIIC107

PIISP09

PIIC106

PIISP01PIC102 PIIC206

PIC202

PIIC2030
PIR401

PIC302 PICry101

PIIC1012

PIC602PICry102 PIIC1013

PICry201

PIIC2027

PICry202 PIIC2028

PIIC101

PIIC102

PIIC103

PIIC104

PIIC105

PIIC1016

PIIC1017

PIIC1020

PIIC1021

PIIC1024

PIIC1025

PIIC1026

PIIC1027

PIIC1028

PIIC1029

PIIC1032

PIIC1033

PIIC1034

PIIC1035

PIIC1036

PIIC1037

PIIC1038

PIIC1039

PIIC1040

PIIC201

PIIC202

PIIC205PIR302

PIIC207PIR202

PIR301

PIIC208PIR102

PIIC2010

PIIC2011

PIIC2012

PIIC2015

PIIC2016

PIIC2018

PIIC2019

PIIC2020

PIIC2021

PIIC2022

PIIC2023

PIIC2032

PIISP03

PIIC1019

PIIC1018

PIC502

PIIC109

PIISP05

PIR501

PIIC108

PIISP07

PII2C03

PIIC1022

PII2C02

PIIC1023

PIBT02

PIFTDI04

PIIC1014

PIBT01

PIFTDI02

PIIC1015

PABT01PABT02PABT03PABT04

COBT

PAC102

PAC101

COC1

PAC202

PAC201
COC2

PAC301

PAC302
COC3

PAC402 PAC401COC4

PAC502 PAC501COC5

PAC601

PAC602
COC6

PAC701

PAC702
COC7

PACry101

PACry102

COCry1
PACry201

PACry202
COCry2

PAFTDI01
PAFTDI02

PAFTDI03
PAFTDI04COFTDI PAI2C01 PAI2C02 PAI2C03 PAI2C04

COI2C

PAIC101

PAIC102

PAIC103

PAIC104

PAIC105

PAIC106

PAIC107

PAIC108

PAIC109

PAIC1010

PAIC1011

PAIC1012

PAIC1013

PAIC1014

PAIC1015

PAIC1016

PAIC1017

PAIC1018

PAIC1019

PAIC1020

PAIC1040

PAIC1039

PAIC1038

PAIC1037

PAIC1036

PAIC1035

PAIC1034

PAIC1033

PAIC1032

PAIC1031

PAIC1030

PAIC1029

PAIC1028

PAIC1027

PAIC1026

PAIC1025

PAIC1024

PAIC1023

PAIC1022

PAIC1021

COIC1

PAIC201PAIC202PAIC203PAIC204PAIC205PAIC206PAIC207PAIC208
PAIC209

PAIC2010
PAIC2011

PAIC2012

PAIC2013

PAIC2014
PAIC2015

PAIC2016

PAIC2017 PAIC2018PAIC2019 PAIC2020 PAIC2021 PAIC2022PAIC2023 PAIC2024
PAIC2025

PAIC2026
PAIC2027
PAIC2028

PAIC2029

PAIC2030
PAIC2031
PAIC2032

COIC2

PAISP01
PAISP02

PAISP03
PAISP04

PAISP05
PAISP06

PAISP07
PAISP08

PAISP09
PAISP010

COISP

PAOTG01

PAOTG02
PAOTG03
PAOTG04
PAOTG05

COOTG

PAR102

PAR101

COR1

PAR202

PAR201

COR2

PAR302

PAR301

COR3

PAR402

PAR401

COR4

PAR502PAR501 COR5

PAUSB Con05PAUSB Con06
PAUSB Con01 PAUSB Con02 PAUSB Con04PAUSB Con03

COUSB Con

PAUSB Pwr02PAUSB Pwr01

COUSB Pwr

PABT04

PAC402

PAC701

PAI2C01

PAIC1010

PAIC1030

PAIC203PAIC204

PAIC2013

PAIC2026

PAISP02

PAR402

PAR502

PAUSB Pwr01

PAOTG01

PAUSB Con01PAUSB Pwr02

PAOTG03
PAR201

PAUSB Con03

PAOTG02 PAR101

PAUSB Con02

PAFTDI01

PAIC2024

PAFTDI03

PAIC2025

PABT03

PAC101

PAC201

PAC301

PAC401

PAC501

PAC601

PAC702

PAI2C04

PAIC1011

PAIC1031

PAIC209

PAIC2014

PAIC2017

PAIC2029

PAIC2031

PAISP04PAISP06PAISP08PAISP010

PAOTG04
PAOTG05

PAUSB Con04
PAUSB Con05PAUSB Con06

PAIC107

PAISP09

PAIC106

PAISP01

PAC102

PAIC206

PAC202

PAIC2030

PAR401
PAC302PACry101

PAIC1012

PAC602PACry102

PAIC1013

PACry201
PAIC2027

PACry202

PAIC2028

PAIC205

PAR302

PAIC207

PAR202

PAR301

PAIC208

PAR102

PAIC1019

PAIC1018

PAC502

PAIC109

PAISP05

PAR501

PAIC108

PAISP07

PAI2C03

PAIC1022

PAI2C02

PAIC1023

PABT02

PAFTDI04

PAIC1014

PABT01

PAFTDI02

PAIC1015

PABT01PABT02PABT03PABT04

COBT

PAC102

PAC101

COC1

PAC202

PAC201
COC2

PAC301

PAC302
COC3

PAC402 PAC401COC4

PAC502 PAC501COC5

PAC601

PAC602
COC6

PAC701

PAC702
COC7

PACry101

PACry102

COCry1
PACry201

PACry202
COCry2

PAFTDI01
PAFTDI02

PAFTDI03
PAFTDI04COFTDI PAI2C01 PAI2C02 PAI2C03 PAI2C04

COI2C

PAIC101

PAIC102

PAIC103

PAIC104

PAIC105

PAIC106

PAIC107

PAIC108

PAIC109

PAIC1010

PAIC1011

PAIC1012

PAIC1013

PAIC1014

PAIC1015

PAIC1016

PAIC1017

PAIC1018

PAIC1019

PAIC1020

PAIC1040

PAIC1039

PAIC1038

PAIC1037

PAIC1036

PAIC1035

PAIC1034

PAIC1033

PAIC1032

PAIC1031

PAIC1030

PAIC1029

PAIC1028

PAIC1027

PAIC1026

PAIC1025

PAIC1024

PAIC1023

PAIC1022

PAIC1021

COIC1

PAIC201PAIC202PAIC203PAIC204PAIC205PAIC206PAIC207PAIC208
PAIC209

PAIC2010
PAIC2011

PAIC2012

PAIC2013

PAIC2014
PAIC2015

PAIC2016

PAIC2017 PAIC2018PAIC2019 PAIC2020 PAIC2021 PAIC2022PAIC2023 PAIC2024
PAIC2025

PAIC2026
PAIC2027
PAIC2028

PAIC2029

PAIC2030
PAIC2031
PAIC2032

COIC2

PAISP01
PAISP02

PAISP03
PAISP04

PAISP05
PAISP06

PAISP07
PAISP08

PAISP09
PAISP010

COISP

PAOTG01

PAOTG02
PAOTG03
PAOTG04
PAOTG05

COOTG

PAR102

PAR101

COR1

PAR202

PAR201

COR2

PAR302

PAR301

COR3

PAR402

PAR401

COR4

PAR502PAR501 COR5

PAUSB Con05PAUSB Con06
PAUSB Con01 PAUSB Con02 PAUSB Con04PAUSB Con03

COUSB Con

PAUSB Pwr02PAUSB Pwr01

COUSB Pwr

PABT04

PAC402

PAC701

PAI2C01

PAIC1010

PAIC1030

PAIC203PAIC204

PAIC2013

PAIC2026

PAISP02

PAR402

PAR502

PAUSB Pwr01

PAOTG01

PAUSB Con01PAUSB Pwr02

PAOTG03
PAR201

PAUSB Con03

PAOTG02 PAR101

PAUSB Con02

PAFTDI01

PAIC2024

PAFTDI03

PAIC2025

PABT03

PAC101

PAC201

PAC301

PAC401

PAC501

PAC601

PAC702

PAI2C04

PAIC1011

PAIC1031

PAIC209

PAIC2014

PAIC2017

PAIC2029

PAIC2031

PAISP04PAISP06PAISP08PAISP010

PAOTG04
PAOTG05

PAUSB Con04
PAUSB Con05PAUSB Con06

PAIC107

PAISP09

PAIC106

PAISP01

PAC102

PAIC206

PAC202

PAIC2030

PAR401
PAC302PACry101

PAIC1012

PAC602PACry102

PAIC1013

PACry201
PAIC2027

PACry202

PAIC2028

PAIC205

PAR302

PAIC207

PAR202

PAR301

PAIC208

PAR102

PAIC1019

PAIC1018

PAC502

PAIC109

PAISP05

PAR501

PAIC108

PAISP07

PAI2C03

PAIC1022

PAI2C02

PAIC1023

PABT02

PAFTDI04

PAIC1014

PABT01

PAFTDI02

PAIC1015

PABT01PABT02PABT03PABT04

COBT

PAC102

PAC101

COC1

PAC202

PAC201
COC2

PAC301

PAC302
COC3

PAC402 PAC401COC4

PAC502 PAC501COC5

PAC601

PAC602
COC6

PAC701

PAC702
COC7

PACry101

PACry102

COCry1
PACry201

PACry202
COCry2

PAFTDI01
PAFTDI02

PAFTDI03
PAFTDI04COFTDI PAI2C01 PAI2C02 PAI2C03 PAI2C04

COI2C

PAIC101

PAIC102

PAIC103

PAIC104

PAIC105

PAIC106

PAIC107

PAIC108

PAIC109

PAIC1010

PAIC1011

PAIC1012

PAIC1013

PAIC1014

PAIC1015

PAIC1016

PAIC1017

PAIC1018

PAIC1019

PAIC1020

PAIC1040

PAIC1039

PAIC1038

PAIC1037

PAIC1036

PAIC1035

PAIC1034

PAIC1033

PAIC1032

PAIC1031

PAIC1030

PAIC1029

PAIC1028

PAIC1027

PAIC1026

PAIC1025

PAIC1024

PAIC1023

PAIC1022

PAIC1021

COIC1

PAIC201PAIC202PAIC203PAIC204PAIC205PAIC206PAIC207PAIC208
PAIC209

PAIC2010
PAIC2011

PAIC2012

PAIC2013

PAIC2014
PAIC2015

PAIC2016

PAIC2017 PAIC2018PAIC2019 PAIC2020 PAIC2021 PAIC2022PAIC2023 PAIC2024
PAIC2025

PAIC2026
PAIC2027
PAIC2028

PAIC2029

PAIC2030
PAIC2031
PAIC2032

COIC2

PAISP01
PAISP02

PAISP03
PAISP04

PAISP05
PAISP06

PAISP07
PAISP08

PAISP09
PAISP010

COISP

PAOTG01

PAOTG02
PAOTG03
PAOTG04
PAOTG05

COOTG

PAR102

PAR101

COR1

PAR202

PAR201

COR2

PAR302

PAR301

COR3

PAR402

PAR401

COR4

PAR502PAR501 COR5

PAUSB Con05PAUSB Con06
PAUSB Con01 PAUSB Con02 PAUSB Con04PAUSB Con03

COUSB Con

PAUSB Pwr02PAUSB Pwr01

COUSB Pwr

PABT04

PAC402

PAC701

PAI2C01

PAIC1010

PAIC1030

PAIC203PAIC204

PAIC2013

PAIC2026

PAISP02

PAR402

PAR502

PAUSB Pwr01

PAOTG01

PAUSB Con01PAUSB Pwr02

PAOTG03
PAR201

PAUSB Con03

PAOTG02 PAR101

PAUSB Con02

PAFTDI01

PAIC2024

PAFTDI03

PAIC2025

PABT03

PAC101

PAC201

PAC301

PAC401

PAC501

PAC601

PAC702

PAI2C04

PAIC1011

PAIC1031

PAIC209

PAIC2014

PAIC2017

PAIC2029

PAIC2031

PAISP04PAISP06PAISP08PAISP010

PAOTG04
PAOTG05

PAUSB Con04
PAUSB Con05PAUSB Con06

PAIC107

PAISP09

PAIC106

PAISP01

PAC102

PAIC206

PAC202

PAIC2030

PAR401
PAC302PACry101

PAIC1012

PAC602PACry102

PAIC1013

PACry201
PAIC2027

PACry202

PAIC2028

PAIC205

PAR302

PAIC207

PAR202

PAR301

PAIC208

PAR102

PAIC1019

PAIC1018

PAC502

PAIC109

PAISP05

PAR501

PAIC108

PAISP07

PAI2C03

PAIC1022

PAI2C02

PAIC1023

PABT02

PAFTDI04

PAIC1014

PABT01

PAFTDI02

PAIC1015

68 APPENDIX B. ASSEMBLY DRAWINGS

B.4 ATmega32 Final Board

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2014-05-06 Sheet of
File: \\..\main.SchDoc Drawn By:

+5V

GND

GND
GND

+5V
+5V

reset

RxD
TxD

ATmega32

+5V

GND

PB0 (XCK/T0)1

PB1 (T1)2

PB2 (AIN0/INT2)3

PB3 (AIN1/OC0)4

PB4 (SS)5

PB5 (MOSI)6

PB6 (MISO)7

PB7 (SCK)8

RESET9

PD0 (RXD)14

PD1 (TXD)15

PD2 (INT0)16

PD3 (INT1)17

PD4 (OC1B)18

PD5 (OC1A)19

PD6 (ICP)20

PD7 (OC2)21

XTAL212

XTAL113 GND 11

PC0 (SCL) 22

PC1 (SDA) 23

PC2 (TCK) 24

PC3 (TMS) 25

PC4 (TDO) 26

PC5 (TDI) 27

PC6 (TOSC1) 28

PC7 (TOSC2) 29

AREF 32AVCC 30

GND 31

PA7 (ADC7) 33PA6 (ADC6) 34PA5 (ADC5) 35PA4 (ADC4) 36PA3 (ADC3) 37PA2 (ADC2) 38PA1 (ADC1) 39PA0 (ADC0) 40

VCC 10

IC1

ATmega3222p
C3

22p
C6

Cry1

16MHz

1k
R5

100n
C5
reset

sda
scl

oc1a
oc1b

miso
mosi

sck

GND GND

mosi
miso

sck
reset

+5V

100n
C4

1
2
3
4

UART

GND
+5V

RxD
TxDsda

scl

1u
C7

+5V

GND

GND

1 2
3 4
5 6

ISP

1
2

I2C

oc1a
oc1b1

2

PWM

1
2

Robot

GND
+5V

ATmega32 final

Alexander Hirsch

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PICry101 PICry102

COCry1

PII2C01

PII2C02

COI2C

PIIC101

PIIC102

PIIC103

PIIC104

PIIC105

PIIC106

PIIC107

PIIC108

PIIC109

PIIC1010

PIIC1011

PIIC1012

PIIC1013

PIIC1014

PIIC1015

PIIC1016

PIIC1017

PIIC1018

PIIC1019

PIIC1020

PIIC1021

PIIC1022

PIIC1023

PIIC1024

PIIC1025

PIIC1026

PIIC1027

PIIC1028

PIIC1029

PIIC1030

PIIC1031

PIIC1032

PIIC1033

PIIC1034

PIIC1035

PIIC1036

PIIC1037

PIIC1038

PIIC1039

PIIC1040

COIC1
PIISP01 PIISP02

PIISP03 PIISP04

PIISP05 PIISP06

COISP

PIPWM01

PIPWM02

COPWM

PIR501

PIR502
COR5

PIRobot01

PIRobot02

CORobot

PIUART01

PIUART02

PIUART03

PIUART04

COUART

PIC402

PIC701

PIIC1010

PIIC1030

PIISP02

PIR502

PIRobot01

PIUART04

PIC301

PIC401

PIC501

PIC601

PIC702

PIIC1011

PIIC1031

PIISP06

PIRobot02

PIUART03

PIIC107

PIISP01

PIIC106

PIISP04

PIC302 PICry101

PIIC1012

PIC602PICry102 PIIC1013

PIIC101

PIIC102

PIIC103

PIIC104

PIIC105

PIIC1016

PIIC1017

PIIC1020

PIIC1021

PIIC1024

PIIC1025

PIIC1026

PIIC1027

PIIC1028

PIIC1029

PIIC1032

PIIC1033

PIIC1034

PIIC1035

PIIC1036

PIIC1037

PIIC1038

PIIC1039

PIIC1040

PIIC1019PIPWM02

PIIC1018PIPWM01

PIC502

PIIC109

PIISP05

PIR501

PIIC1014

PIUART02 PIIC108

PIISP03

PII2C02

PIIC1022

PII2C01

PIIC1023PIIC1015

PIUART01

PAC301

PAC302
COC3

PAC402

PAC401

COC4

PAC502

PAC501

COC5

PAC601

PAC602
COC6

PAC701

PAC702

COC7

PACry101

PACry102

COCry1

PAI2C02

PAI2C01

COI2C

PAIC101

PAIC102

PAIC103

PAIC104

PAIC105

PAIC106

PAIC107

PAIC108

PAIC109

PAIC1010

PAIC1011

PAIC1012

PAIC1013

PAIC1014

PAIC1015

PAIC1016

PAIC1017

PAIC1018

PAIC1019

PAIC1020

PAIC1040

PAIC1039

PAIC1038

PAIC1037

PAIC1036

PAIC1035

PAIC1034

PAIC1033

PAIC1032

PAIC1031

PAIC1030

PAIC1029

PAIC1028

PAIC1027

PAIC1026

PAIC1025

PAIC1024

PAIC1023

PAIC1022

PAIC1021

COIC1

PAISP06

PAISP05
PAISP04

PAISP03
PAISP02

PAISP01

COISP

PAPWM02

PAPWM01

COPWM

PAR502

PAR501

COR5

PARobot02
PARobot01

CORobot

PAUART01PAUART02PAUART03PAUART04

COUART

PAC402

PAC701

PAIC1010

PAIC1030

PAISP02

PAR502

PARobot01

PAUART04

PAC301

PAC401

PAC501

PAC601

PAC702

PAIC1011

PAIC1031

PAISP06

PARobot02

PAUART03

PAIC107

PAISP01

PAIC106

PAISP04

PAC302

PACry101
PAIC1012

PAC602

PACry102
PAIC1013

PAIC1019 PAPWM02

PAIC1018 PAPWM01

PAC502

PAIC109

PAISP05
PAR501

PAIC1014

PAUART02

PAIC108

PAISP03

PAI2C02 PAIC1022

PAI2C01 PAIC1023

PAIC1015

PAUART01

PAC301

PAC302
COC3

PAC402

PAC401

COC4

PAC502

PAC501

COC5

PAC601

PAC602
COC6

PAC701

PAC702

COC7

PACry101

PACry102

COCry1

PAI2C02

PAI2C01

COI2C

PAIC101

PAIC102

PAIC103

PAIC104

PAIC105

PAIC106

PAIC107

PAIC108

PAIC109

PAIC1010

PAIC1011

PAIC1012

PAIC1013

PAIC1014

PAIC1015

PAIC1016

PAIC1017

PAIC1018

PAIC1019

PAIC1020

PAIC1040

PAIC1039

PAIC1038

PAIC1037

PAIC1036

PAIC1035

PAIC1034

PAIC1033

PAIC1032

PAIC1031

PAIC1030

PAIC1029

PAIC1028

PAIC1027

PAIC1026

PAIC1025

PAIC1024

PAIC1023

PAIC1022

PAIC1021

COIC1

PAISP06

PAISP05
PAISP04

PAISP03
PAISP02

PAISP01

COISP

PAPWM02

PAPWM01

COPWM

PAR502

PAR501

COR5

PARobot02
PARobot01

CORobot

PAUART01PAUART02PAUART03PAUART04

COUART

PAC402

PAC701

PAIC1010

PAIC1030

PAISP02

PAR502

PARobot01

PAUART04

PAC301

PAC401

PAC501

PAC601

PAC702

PAIC1011

PAIC1031

PAISP06

PARobot02

PAUART03

PAIC107

PAISP01

PAIC106

PAISP04

PAC302

PACry101
PAIC1012

PAC602

PACry102
PAIC1013

PAIC1019 PAPWM02

PAIC1018 PAPWM01

PAC502

PAIC109

PAISP05
PAR501

PAIC1014

PAUART02

PAIC108

PAISP03

PAI2C02 PAIC1022

PAI2C01 PAIC1023

PAIC1015

PAUART01

PAC301

PAC302
COC3

PAC402

PAC401

COC4

PAC502

PAC501

COC5

PAC601

PAC602
COC6

PAC701

PAC702

COC7

PACry101

PACry102

COCry1

PAI2C02

PAI2C01

COI2C

PAIC101

PAIC102

PAIC103

PAIC104

PAIC105

PAIC106

PAIC107

PAIC108

PAIC109

PAIC1010

PAIC1011

PAIC1012

PAIC1013

PAIC1014

PAIC1015

PAIC1016

PAIC1017

PAIC1018

PAIC1019

PAIC1020

PAIC1040

PAIC1039

PAIC1038

PAIC1037

PAIC1036

PAIC1035

PAIC1034

PAIC1033

PAIC1032

PAIC1031

PAIC1030

PAIC1029

PAIC1028

PAIC1027

PAIC1026

PAIC1025

PAIC1024

PAIC1023

PAIC1022

PAIC1021

COIC1

PAISP06

PAISP05
PAISP04

PAISP03
PAISP02

PAISP01

COISP

PAPWM02

PAPWM01

COPWM

PAR502

PAR501

COR5

PARobot02
PARobot01

CORobot

PAUART01PAUART02PAUART03PAUART04

COUART

PAC402

PAC701

PAIC1010

PAIC1030

PAISP02

PAR502

PARobot01

PAUART04

PAC301

PAC401

PAC501

PAC601

PAC702

PAIC1011

PAIC1031

PAISP06

PARobot02

PAUART03

PAIC107

PAISP01

PAIC106

PAISP04

PAC302

PACry101
PAIC1012

PAC602

PACry102
PAIC1013

PAIC1019 PAPWM02

PAIC1018 PAPWM01

PAC502

PAIC109

PAISP05
PAR501

PAIC1014

PAUART02

PAIC108

PAISP03

PAI2C02 PAIC1022

PAI2C01 PAIC1023

PAIC1015

PAUART01

B.5. ATMEGA32 FINAL BOARD WITH PIN HEADERS 73

B.5 ATmega32 Final Board with Pin Headers

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2014-05-06 Sheet of
File: \\..\main.SchDoc Drawn By:

+5V

GND

GND
GND

+5V
+5V

reset

RxD
TxD

ATmega32

+5V

GND

PB0 (XCK/T0)1

PB1 (T1)2

PB2 (AIN0/INT2)3

PB3 (AIN1/OC0)4

PB4 (SS)5

PB5 (MOSI)6

PB6 (MISO)7

PB7 (SCK)8

RESET9

PD0 (RXD)14

PD1 (TXD)15

PD2 (INT0)16

PD3 (INT1)17

PD4 (OC1B)18

PD5 (OC1A)19

PD6 (ICP)20

PD7 (OC2)21

XTAL212

XTAL113 GND 11

PC0 (SCL) 22

PC1 (SDA) 23

PC2 (TCK) 24

PC3 (TMS) 25

PC4 (TDO) 26

PC5 (TDI) 27

PC6 (TOSC1) 28

PC7 (TOSC2) 29

AREF 32AVCC 30

GND 31

PA7 (ADC7) 33PA6 (ADC6) 34PA5 (ADC5) 35PA4 (ADC4) 36PA3 (ADC3) 37PA2 (ADC2) 38PA1 (ADC1) 39PA0 (ADC0) 40

VCC 10

IC1

ATmega3222p
C3

22p
C6

Cry1

16MHz

1k
R5

100n
C5
reset

miso
mosi

sck

GND GND

mosi
miso

sck
reset

+5V

100n
C4

1
2
3
4

UART

GND
+5V

RxD
TxD

1u
C7

+5V

GND

GND

1 2
3 4
5 6

ISP

1
2

Vcc

GND
+5V

ATmega32 final (full pin headers)

Alexander Hirsch

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PICry101 PICry102

COCry1

PIIC101

PIIC102

PIIC103

PIIC104

PIIC105

PIIC106

PIIC107

PIIC108

PIIC109

PIIC1010

PIIC1011

PIIC1012

PIIC1013

PIIC1014

PIIC1015

PIIC1016

PIIC1017

PIIC1018

PIIC1019

PIIC1020

PIIC1021

PIIC1022

PIIC1023

PIIC1024

PIIC1025

PIIC1026

PIIC1027

PIIC1028

PIIC1029

PIIC1030

PIIC1031

PIIC1032

PIIC1033

PIIC1034

PIIC1035

PIIC1036

PIIC1037

PIIC1038

PIIC1039

PIIC1040

COIC1
PIISP01 PIISP02

PIISP03 PIISP04

PIISP05 PIISP06

COISP

PIR501

PIR502
COR5

PIUART01

PIUART02

PIUART03

PIUART04

COUART

PIVcc01

PIVcc02

COVcc

PIC402

PIC701

PIIC1010

PIIC1030

PIISP02

PIR502

PIUART04

PIVcc01

PIC301

PIC401

PIC501

PIC601

PIC702

PIIC1011

PIIC1031

PIISP06

PIUART03

PIVcc02

PIIC107

PIISP01

PIIC106

PIISP04

PIC302 PICry101

PIIC1012

PIC602PICry102 PIIC1013

PIIC101

PIIC102

PIIC103

PIIC104

PIIC105

PIIC1016

PIIC1017

PIIC1018

PIIC1019

PIIC1020

PIIC1021

PIIC1022

PIIC1023

PIIC1024

PIIC1025

PIIC1026

PIIC1027

PIIC1028

PIIC1029

PIIC1032

PIIC1033

PIIC1034

PIIC1035

PIIC1036

PIIC1037

PIIC1038

PIIC1039

PIIC1040

PIC502

PIIC109

PIISP05

PIR501

PIIC1014

PIUART02

PIIC108

PIISP03

PIIC1015

PIUART01

PAC302

PAC301

COC3
PAC401

PAC402
COC4

PAC501

PAC502

COC5

PAC602

PAC601

COC6
PAC702

PAC701

COC7

PACry102

PACry101
COCry1

PAIC1021

PAIC1022

PAIC1023

PAIC1024

PAIC1025

PAIC1026

PAIC1027

PAIC1028

PAIC1029

PAIC1030

PAIC1031

PAIC1032

PAIC1033

PAIC1034

PAIC1035

PAIC1036

PAIC1037

PAIC1038

PAIC1039

PAIC1040

PAIC1020

PAIC1019

PAIC1018

PAIC1017

PAIC1016

PAIC1015

PAIC1014

PAIC1013

PAIC1012

PAIC1011

PAIC1010

PAIC109

PAIC108

PAIC107

PAIC106

PAIC105

PAIC104

PAIC103

PAIC102

PAIC101

COIC1

PAISP01
PAISP02

PAISP03
PAISP04

PAISP05
PAISP06 COISP

PAR501

PAR502

COR5

PAUART04 PAUART03 PAUART02 PAUART01

COUART

PAVcc01
PAVcc02

COVcc

PAC402

PAC701

PAIC1010

PAIC1030

PAISP02

PAR502

PAUART04

PAVcc01

PAC301

PAC401

PAC501

PAC601
PAC702

PAIC1011

PAIC1031

PAISP06

PAUART03

PAVcc02

PAIC107

PAISP01

PAIC106

PAISP04

PAC302

PACry101
PAIC1012

PAC602

PACry102
PAIC1013

PAC502

PAIC109

PAISP05
PAR501

PAIC1014

PAUART02

PAIC108

PAISP03

PAIC1015

PAUART01

PAC302

PAC301

COC3
PAC401

PAC402
COC4

PAC501

PAC502

COC5

PAC602

PAC601

COC6
PAC702

PAC701

COC7

PACry102

PACry101
COCry1

PAIC1021

PAIC1022

PAIC1023

PAIC1024

PAIC1025

PAIC1026

PAIC1027

PAIC1028

PAIC1029

PAIC1030

PAIC1031

PAIC1032

PAIC1033

PAIC1034

PAIC1035

PAIC1036

PAIC1037

PAIC1038

PAIC1039

PAIC1040

PAIC1020

PAIC1019

PAIC1018

PAIC1017

PAIC1016

PAIC1015

PAIC1014

PAIC1013

PAIC1012

PAIC1011

PAIC1010

PAIC109

PAIC108

PAIC107

PAIC106

PAIC105

PAIC104

PAIC103

PAIC102

PAIC101

COIC1

PAISP01
PAISP02

PAISP03
PAISP04

PAISP05
PAISP06 COISP

PAR501

PAR502

COR5

PAUART04 PAUART03 PAUART02 PAUART01

COUART

PAVcc01
PAVcc02

COVcc

PAC402

PAC701

PAIC1010

PAIC1030

PAISP02

PAR502

PAUART04

PAVcc01

PAC301

PAC401

PAC501

PAC601
PAC702

PAIC1011

PAIC1031

PAISP06

PAUART03

PAVcc02

PAIC107

PAISP01

PAIC106

PAISP04

PAC302

PACry101
PAIC1012

PAC602

PACry102
PAIC1013

PAC502

PAIC109

PAISP05
PAR501

PAIC1014

PAUART02

PAIC108

PAISP03

PAIC1015

PAUART01

PAC302

PAC301

COC3
PAC401

PAC402
COC4

PAC501

PAC502

COC5

PAC602

PAC601

COC6
PAC702

PAC701

COC7

PACry102

PACry101
COCry1

PAIC1021

PAIC1022

PAIC1023

PAIC1024

PAIC1025

PAIC1026

PAIC1027

PAIC1028

PAIC1029

PAIC1030

PAIC1031

PAIC1032

PAIC1033

PAIC1034

PAIC1035

PAIC1036

PAIC1037

PAIC1038

PAIC1039

PAIC1040

PAIC1020

PAIC1019

PAIC1018

PAIC1017

PAIC1016

PAIC1015

PAIC1014

PAIC1013

PAIC1012

PAIC1011

PAIC1010

PAIC109

PAIC108

PAIC107

PAIC106

PAIC105

PAIC104

PAIC103

PAIC102

PAIC101

COIC1

PAISP01
PAISP02

PAISP03
PAISP04

PAISP05
PAISP06 COISP

PAR501

PAR502

COR5

PAUART04 PAUART03 PAUART02 PAUART01

COUART

PAVcc01
PAVcc02

COVcc

PAC402

PAC701

PAIC1010

PAIC1030

PAISP02

PAR502

PAUART04

PAVcc01

PAC301

PAC401

PAC501

PAC601
PAC702

PAIC1011

PAIC1031

PAISP06

PAUART03

PAVcc02

PAIC107

PAISP01

PAIC106

PAISP04

PAC302

PACry101
PAIC1012

PAC602

PACry102
PAIC1013

PAC502

PAIC109

PAISP05
PAR501

PAIC1014

PAUART02

PAIC108

PAISP03

PAIC1015

PAUART01

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Declaration
	Introduction
	Context and Motivation
	Contribution
	Thesis Outline

	The Robot
	Robot Interior
	Robot On Top
	Component Interaction

	Background Information
	IOIO Board
	Pulse Width Modulation
	Servo Motor
	H-Bridge
	Inter-Integrated Circuit (I2C)
	IR Sensor
	Microcontroller
	Microcontroller Software
	In-System Programming (ISP)
	Universal Asynchronous serial Receiver and Transmitter
	USB Host
	USB On The Go (OTG)

	Evaluation Process
	Categories
	FT311D
	Arduino Uno
	AVR ATmega32
	Raspberry Pi Model B
	Beagle Bone Black
	Evaluation

	FT311D Prototype
	The Chip
	Prototypes
	Android Version Problem

	ATmega32 Prototype
	ATmega32 microcontroller
	FT232
	Layout
	Firmware
	UART Module
	Log Utility
	Command Module
	I2C Module (TWI)
	Timer1 Module
	Robot Module
	Main

	Available commands
	Connecting the devices
	Final Board

	RobotWASD App
	Requirements
	FTDriver
	App
	Manifest and USB Permission

	Conclusion
	Bibliography
	Additional Information
	Assembly Files
	AVR Flashing
	AVR Fuses
	Setup Development Environment
	Setup Android Phone
	Python Example
	OpenCV Example
	Nexus 4 enable OTG

	Assembly Drawings
	FT311D in I2C Configuration
	FT311D in UART Configuration
	ATmega32 with FT232BL
	ATmega32 Final Board
	ATmega32 Final Board with Pin Headers

